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We study spatial correlation functions of static quark-antiquark pairs in QCD with 2+1 flavors in
order to better understand color screening at high temperatures. We performed lattice simulations
in a wide temperature window 115MeV . T . 5.8GeV using the using the highly improved
staggered quark (HISQ) action, the tree-level improved Symanzik gauge action and several lattice
spacings to control discretization effects. By comparing our lattice results to analytic calculations
at weak coupling as well as to the zero temperature result on the static energy we demonstrate
that color screening sets in at distances rT ' 0.25. We also conclude that in the distance regime
0.25< rT < 0.6 the weak-coupling approach provides an adequate description of color screening.
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1. Introduction

It is known from quantum field theoretical studies as well as from heavy-ion collision ex-
periments at RHIC, GSI or LHC and astronomical observations of neutron stars that strongly in-
teracting matter exhibits very different properties depending on the temperature and the baryon
density. For sufficiently small values of the baryochemical potential a high temperature phase
called quark-gluon-plasma has been established. Distinctive properties of quark-gluon-plasma are
color screening, deconfinement and restoration of chiral symmetry, cf. recent reviews [1, 2].

In the limit of vanishing sea quark masses or in the limit of zero flavors of sea quarks, the tran-
sition between quark-gluon-plasma and the vacuum is sharp. For pure gauge theory and the gauge
group SU(Nc), the Polyakov loop is the order parameter of a deconfinement transition, which is
related to the spontaneous breaking of the Z(Nc) center symmetry of the Yang-Mills vacuum. Since
the center symmetry is broken by the presence of sea quarks with sufficiently small quark masses
already in the hadronic phase, the Polyakov loop does not play the role of an order parameter in full
QCD. For massless sea quarks, the chiral susceptibility is the order parameter of the chiral phase
transition. For sufficiently large sea quark masses, the chiral symmetry is already broken explicitly
by the quark masses and the chiral susceptibility does not play the role of an order parameter in full
QCD. In an intermediate range of sea quark masses that includes the physical point, neither is an
order parameter and the QCD transition is a crossover. Nevertheless, would-be order parameters
still provide insight into the mechanisms of breaking the associated approximate symmetries.

Polyakov loops and correlators of Polyakov loops are observables that are sensitive to color
screening. After proper renormalization the Polyakov loop correlator CP can be regarded as the
correlator of a heavy quark-antiquark pair in the limit of infinite heavy quark mass. CP is related
to the free energy of a static QQ̄ pair separated by r, namely CP(r,T ) = exp [−FQQ̄(r,T )/T ]. In the
following we report on preliminary results of a forthcoming extensive analysis of Polyakov loop
correlators in lattice QCD with 2+1 flavors of sea quarks [3].

2. Setup
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Figure 1: Combined TUMQCD and HotQCD 2+1 flavor gauge ensembles in terms of the bare free energy
f b
Q (left). The renormalization constant cQ from direct renormalization supersedes the old result [6] (right).
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We perform simulations of QCD with 2+1 flavors of sea quarks and calculate the Polyakov
loop correlator as well as the color-singlet correlator of a static QQ̄ pair in Coulomb gauge. For
our simulations we use the MILC code. We employ the highly improved staggered quark (HISQ)
action and tree-level improved Symanzik gauge action. The gauge ensembles have been generated
by the HotQCD and TUMQCD collaborations [3, 4, 5, 6]. A detailed account of all ensembles is
given in [3]. We use lattices with extensions Nσ

3×Nτ or Nσ
2×Nz×Nτ . For the temporal extent

we use Nτ = 16, 12, 10, 8, 6 and 4, for the spatial extent we choose Nσ/Nτ = 4 and 6. We also
use a few ensembles with Nz = 2Nσ . We set the strange quark mass ms to its physical value and
use a degenerate light quark doublet with ml = ms/20 or ml = ms/5. These choices correspond
in the continuum limit to pion masses of mπ ≈ 160 or 320MeV respectively. We fix the strange
quark mass in terms of the hypothetical ηss̄ meson, mss̄ ≈ 695MeV, or if determination on T = 0
lattices with the same parameters is not possible, through the lattice mass renormalization function
determined in [5]. We fix the lattice spacing using the r1 scale and the non-perturbative β function
defined in [7]. The scale parameters r0, r1 and r2 are defined in terms of the T = 0 static energy VS

and the corresponding force,

r2 dVS

dr

∣∣∣∣
r=r0

= 1.65, r2 dVS

dr

∣∣∣∣
r=r1

= 1, r2 dVS

dr

∣∣∣∣
r=r2

=
1
2
. (2.1)

We obtain r1 from r0 on coarser lattices and from r2 on finer lattices. The bare gauge couplings
β = 10/g2

0 that we use are in the range of 5.9 ≤ β ≤ 9.67, which corresponds to lattice spacings
of a ≈ 0.0085 to 0.25fm. We have about 30 different values of β available for each Nτ except
Nτ = 16. A chart of the combined TUMQCD and HotQCD ensembles is shown in the left panel
of Fig. 1. Therefore, our simulations span the temperature range between T ≈ 115 and 5814MeV.
The full temperature interval between 134 and 2326MeV is covered by at least four different Nτ .

All of our T > 0 ensembles with ml = ms/5 have temperatures of at least T ≈ 350MeV such
that the quark mass dependence is very mild. We observe that Polyakov loops and the correlators in
ensembles with different quark masses are numerically compatible within uncertainties, although
most ml =ms/5 ensembles have smaller statistical uncertainties. If both are available we choose the
ensemble with better signal-to-noise ratio and combine ensembles with different ml into a common
data set. We use the same r1 scale independent of the quark mass, since the r1 for both setups is
known to differ by only about 1%[7], which is hardly relevant for our study.

We calculate the bare Wilson line W , the bare Polyakov loop P and the corresponding bare
Polyakov loop expectation value Lb as

W (Nτ ,x) =
aNτ

∏
τ=1

U0(τ,x), P(Nτ ,x) =
1
3

Tr cW (Nτ ,x), Lb(β ,Nτ) = 〈P(Nτ ,x)〉β , (2.2)

where we average over the full volume before taking the ensemble average denoted through the
angle brackets 〈. . .〉

β
. Lb ≡ Lb

F is the Polyakov loop in the fundamental representation. We renor-
malize the Polyakov loop through L(β ,Nτ) = exp [aCQ(β )Nτ ]Lb(β ,Nτ), where CQ is a renormal-
ization constant that removes the self-energy divergence due to the gauge links U0. We obtain CQ

from the T = 0 static energy VS at r = r0, r1 or r2 for β ≤ 8.4 and extend it to β > 8.4 using
direct renormalization as described in [6]. We require only one iteration of direct renormalization

2
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owing to the enlarged data set. In the right panel of Fig. 1 we show that the uncertainties of CQ

for 7.03 < β < 8.85 are much reduced due to the inference between six different Nτ in the direct
renormalization procedure thanks to the new T = 0 lattices with β ≥ 8.0 and thanks to the new
high temperature lattices with Nτ > 8 and β > 8.4. We obtain the free energy of an isolated static
quark as FQ(T,a) =−T lnL(β ,Nτ). In free energies we trade β and Nτ for the physical temperature
T = 1/(aNτ) and the lattice spacing a. The expectation values of the bare correlators are

Cb
P(β ,Nτ ,r) =

〈
P(Nτ ,x)P†(Nτ ,x+r)

〉
β
, (2.3)

Cb
S(β ,Nτ ,r) =

1
3
〈
Tr c
{

W (Nτ ,x)W †(Nτ ,x+r)
}〉

β
. (2.4)

For Eq. (2.4) we have fixed Coulomb gauge and the trace Tr c{. . .} runs over all color indices. We
average the correlators over the full volume before taking the ensemble average. We may inter-
pret Eq. (2.4) as a static meson correlation function at Euclidean time τ = 1/T with a separation r
between the quark and antiquark. In the infinite volume limit the static QQ̄ decouple and the corre-
lators approach |Lb(β ,Nτ)|2 1. The self-energy divergences due to the gauge links U0 contributing
to the Polyakov loop and the correlators cancel exactly in the ratios

Csub
P (β ,Nτ ,r) =

〈
〈P(Nτ ,x)P†(Nτ ,x+r)〉x

〈P(Nτ ,x)〉2x

〉
β

, (2.5)

Csub
S (β ,Nτ ,r) =

1
3

〈
〈Tr c

{
W (Nτ ,x)W †(Nτ ,x+r)

}
〉
x

〈P(Nτ ,x)〉2x

〉
β

, (2.6)

which are do not require renormalization. Here we explicitly separate the volume average 〈. . .〉x
and the ensemble average 〈. . .〉

β
, taking the ratios along the molecular dynamics history to benefit

from partial cancellation of statistical fluctuations between the correlators for large QQ̄ separations
and the Polyakov loops. We define subtracted free energies in terms of these ratios,

Fsub
QQ̄ (r,T,a) =−T lnCsub

P (β ,Nτ ,r), Fsub
S (r,T,a) =−T lnCsub

S (β ,Nτ ,r). (2.7)

By adding 2FQ(T,a) we obtain renormalized free energies FQQ̄ = Fsub
QQ̄ +2FQ and FS = Fsub

S +2FQ.
We denote any free energies in the following just by F if no distinction is required and write for F
in units of the temperature f = F/T . Similarly we write for the renormalization constant times the
lattice spacing cQ = aCQ, cf. Fig. 1.

3. Lattice results

In this section we discuss the main results of our lattice calculation. The free energies F are
available only for discrete sets of temperatures that are different for each Nτ . Moreover, for fixed
temperature T = 1/(aNτ) the available separations r or rT are not the same for data with different
Nτ . This is particularly relevant as we use tree-level and non-perturbative improvement [3] for the
correlators. Lastly, we observe that the cutoff effects are strongly rT and T dependent. These issues
necessitate either a fully global analysis in rT, T and a or subsequent interpolations in rT and T

1For QCD this is simply (Lb(β ,Nτ ))
2 since L is real.
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Figure 2: Scaling behavior of Fsub
S for T = 200 and 800MeV (from left to right). Larger open symbols

indicate results from successive local interpolations, smaller filled symbols from global fits in rT and T .
Data have been normalized by the continuum limit and shifted vertically for better visibility. FQQ̄ and FS

follow the same overall trends in the scaling behavior.

followed by extrapolations in a or 1/Nτ respectively. We pursue both approaches, performing first
a full Jackknife analysis for each F(T,a) to interpolate in rT and then a temperature interpolation
for each F(rT,a) using smoothing splines with the bootstrap method for error propagation. Alter-
natively we perform global fits for each F(Nτ) restricted to overlapping low or high temperature
intervals using the bootstrap method. As the results are largely commensurate we average over
both and estimate systematic uncertainties from their difference. Eventually we extrapolate each
Fsub(rT,T ) to the continuum limit using different assumptions on scaling behavior, namely

Fsub(rT,T,Nτ) = Fsub
0 (rT,T )+

Fsub
2 (rT,T )

Nτ
2 +

Fsub
4 (rT,T )

Nτ
4 (3.1)

with or without the quadratic and quartic terms and for different restrictions of the Nτ range. We
generally find that discretization errors are more prominent for larger rT and for lower temperatures
as we show in Fig. 2. Data for Nτ = 6 are in the a2 scaling regime except for T < 200MeV
or rT > 0.3, while data for Nτ = 4 always require a4 scaling. In the range of rT ≤ 0.15 and
T ≥ 180MeV data for Nτ ≥ 8 are within uncertainties consistent with the continuum limit. We
piece together the continuum result from appropriate continuum extrapolations for each (rT,T )
range and finally renormalize by adding 2FQ(T ) to the continuum limit.

We show the continuum limit of FS and FQQ̄ in Fig. 3. We observe for T & 300MeV that
the free energies reach their asymptotic value 2FQ within errors. For separations up to rT . 0.25
the difference between the T = 0 static energy VS and the T > 0 singlet free energy FS is small
compared to the uncertainty of the renormalization constant 2CQ. For sufficiently small separa-
tions FQQ̄−T ln(9) is numerically consistent with FS as suggested by the gauge-dependent color
decomposition [9]

CP(rT,T ) = exp [−FQQ̄(rT,T )/T ] =
1
9

exp [−FS(rT,T )/T ]+
8
9

exp [−FA(rT,T )/T ]. (3.2)

4. Vacuum-like regime

It is clear that free energies depend only mildly on effects of the thermal medium at sufficiently

4
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Figure 4: In the vacuum-like regime ∆V FS and ∆0FS are commensurable (left). Up to a shift of similar size
as ∆0FS the rT dependence is consistent with the pNRQCD prediction at O(g5) shown as lines (right).

small separations. Thanks to asymptotic freedom small separations imply weak coupling. Thus,
there may be a regime where weak coupling and lattice QCD results are compatible.

The difference ∆V FS = VS − FS is particularly suitable for a comparison between both ap-
proaches. Namely, the self-energy divergences in ∆V FS cancel exactly, thus alleviating the need for
renormalization with CQ and the associated error. Moreover, as discretization errors for r/a . 3
due to the breaking of rotational symmetry in VS and FS are similar, ∆V FS benefits from a strong
compensation of errors. ∆V FS has been calculated in pNRQCD up to O(α3

s ) [8]. The result reads

∆V FS(rT,T )≡VS(r)−FS(rT,T ) = α
2
s T [∆ fg(rT )+∆ f f (rT )+∆ fs(rT,g)]+O(α3

s ). (4.1)

Gluonic, fermionic and screening terms ∆ fg, ∆ f f and ∆ fs read as functions of x = (π/3)rT

∆ fg(x) = NcCF

{
−1

3
x+

2ζ (3)
ζ (2)

x2− 22
25

x3
}
+O(αs,x4), (4.2)

∆ f f (x) = N fCF

{
+

3ζ (3)
2ζ (2)

x2− 7
10

x3
}
+O(αs,x4)), (4.3)

∆ fs(x) =−
CF

αs

(
mLO

D
T

)3 1
4ζ (2)

x2 +O(g3x4). (4.4)
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mLO
D = gT

√
(Nc +N f /2)/3 is the leading order Debye mass. The coefficients of x2 in ∆ fg and ∆ f f

on the one hand and ∆ fs on the other hand have opposite sign, indicating a compensation between
different thermal effects.

We take note that on dimensional grounds FS may contain an rT independent term2 of order
α3

s T . We denote this term as ∆0FS(T ) and determine it at the smallest available distance, r/a = 1,

∆0FS(T ) = lim
a→0

lim
r→0

{
FS(r,T,a)− lim

T→0
FS(r,T,a)

}
≈
{

FS(
1
a
,T,a)− lim

Nτ→∞
FS(

1
a
,

1
aNτ

,a)
}
. (4.5)

We calculate ∆0FS(T ) for fixed lattice spacing a through Eq. (4.5) using only Nτ ≥ 10 and find no
systematic a dependence. Thus, we consider ∆FS(1/a,T,a) as continuum estimate for ∆0FS(T ).
Using Nτ = 12 data we show in Fig. 4 the lattice results for ∆V FS and ∆0FS together in the left panel
and with the weak-coupling results in the right panel. Below rT . 0.25 ∆V FS is small and only
mildly rT dependent, about 2% of the temperature, while above rT & 0.25 temperature effects in
∆V FS rapidly become large, giving rise to a steep rT dependence due to color screening.
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Figure 5: In the vacuum-like regime pNRQCD describes FQQ̄ in terms of VS, VA and LA. FQQ̄ is insensitive
to VA and LA for T < 200MeV (left), while both and Eq. (4.7) must be included at high temperatures (right).

In weakly-coupled pNRQCD the Polyakov loop correlator satisfies at small separations a
gauge-invariant decomposition in terms of singlet and adjoint free energies [10], which is remi-
niscent of Eq. (3.2). Up to higher orders in rT and rmD this is a relation with singlet and adjoint
potentials, VS and VA, and the Polyakov loop in the adjoint representation, LA. Namely,

CP(rT,T ) = exp [−FQQ̄(rT,T )/T ] =
1

N2
c

exp [−VS(r)/T ]+
N2

c −1
N2

c
LA(T )exp [−VA(r)/T ]. (4.6)

We obtain the adjoint potential VA from VS by including the Casimir-scaling violation [11]

(N2
c −1)VA +VS = Nc

N2
c −1
8

α3
s

r

(
π

2/4−3
)
+O(α4

s ). (4.7)

Via Casimir scaling we obtain LA = [(1−δ8)LF ]
CF/CA . Casimir-scaling violations are parameterized

by δ8, which is empirically compatible with zero for T > 300MeV [12]. Using Nτ = 12 data we
show in Fig. 5 that FQQ̄ is described well by Eq. (4.6) up to rT . 1/3. In particular, we do not

2The rT independence is supposed to hold only for the leading order, i.e. α3
s .
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see significant differences between Eq. (4.6) including or excluding the VA contribution for T <

200MeV, indicating that the color-adjoint contribution is suppressed. This is contrasted by a poor
reconstruction of FQQ̄ at high temperatures without correction via Eq. (4.7). Hence, cancellation
between color-singlet and -adjoint states becomes stronger with increasing temperature, or in other
words, the spectral gap shrinks. This lowered gap suggests that real-time processes like dissociation
and recombination may be dominant for compact heavy quark-antiquark systems in a thermal bath.

5. Electric screening regime

For QQ̄ separations larger than rT & 0.25 the correlators invariably become more and more
sensitive to the color screening. In this section we establish whether this can be related to the Debye
screening in dimensionally-reduced effective field theories. These can be obtained for quantum
field theories at sufficiently high temperatures by integrating out the non-static Matsubara modes
through a UV cutoff [13]. The three-dimensional effective theory for QCD is called electrostatic
QCD (EQCD) [14]. Its low-energy degree of freedom is the electrostatic gauge field, whose mass
parameter corresponds to the perturbative Debye mass. Since the running of the gauge coupling in
EQCD is far milder than for QCD, we anticipate a regime around rmD ∼ 1 with moderately weak
interactions even at values of r where confinement would be observable in the vacuum.

Both the free energy [9] and the singlet free energy [15] have been calculated in EQCD at
NLO in terms of the Debye mass. For consistent counting we require mD determined at NLO [14],

(mNLO
D )2 =

(
1+

g2

(4π)2

[5Nc +2N f (1−4ln2)
3

+
11−2N f

3
Lb

])
(mLO

D )2−CFN f
g4

(4π)2 , (5.1)

where Lb is the bosonic Matsubara sum. Moreover we use the NLO field renormalization factor Z1,

Z1 = 1+αs

[11Nc

3
(Lb +1)−

2N f

3
(L f −1)

]
, (5.2)

with bosonic and fermionic Matsubara sums Lb = 2ln
[
µeγE/(4πT )

]
and L f = 2ln

[
µeγE/(πT )

]
.

αs, mD and Z1 explicitly depend on the renormalization scale µ . The NLO results for the subtracted
free energies read

Fsub,NLO
S =−CF

αs(µ)e−rmD(µ)

r

(
Z2

1(µ,T )

+αs(µ)NcrT
[
2− ln

(
2rmD(µ)

)
− γE + e+2rmD(µ)E1(2rmD(µ))

])
, (5.3)

Fsub,NLO
QQ̄ =

{
αs(µ)e−rmD(µ)

3rT

}2(
Z2

1(µ,T )+2Ncαs(µ)rT
[3− γE

2
+

ln[rmD(µ)]

2
− ln[2rmD(µ)]

+
ln[2rmD(µ)]+ γE

rmD(µ)
− 1

2
g[2rmD(µ)]+

1
2

h[4rmD(µ)]−
h[2rmD(µ)]

rmD(µ)

])
, (5.4)

where the functions g(y) and h(y) are defined as

g(y) =
∞∫

0

dx
e−xy

x+1
ln
[

x+2
x

]
, h(y) = eyEi(−y). (5.5)
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Figure 6: Subtracted free energies from lattice and EQCD. Hashed or solid bands represent the EQCD
results at LO or NLO respectively for a variation of the cutoff scale as µ = πT, 2πT and 4πT . For FQQ̄ we
show continuum results as filled symbols and Nτ = 4 results with Nσ/Nτ = 6 as open symbols (right).

The second power of first term in Eq. (5.4) is due to the cancellation between color-singlet and
color-adjoint contributions discussed already in Eq. (4.6).

We show continuum-extrapolated lattice results for the subtracted free energies together with
the EQCD predictions at LO and NLO in Fig. 6. The lattice results are much better described
by EQCD at NLO than at LO, indicating that the weak-coupling expansion is indeed on solid
footing in the electric screening regime. For small (rT � 0.2) and large (rT � 0.4) separations
the rT dependence of FS is not consistent with EQCD. We understand the former as the vacuum-
like regime, for which pNRQCD provides an appropriate description, cf. Sec. 4. We understand
the latter as the regime of asymptotic screening. The corresponding asymptotic screening mass
is considerable larger than the Debye mass of EQCD. At small rT we see a non-EQCD regime
in FQQ̄, too. The rT dependence in this regime, which rapidly becomes shorter with increasing
temperature, is inconsistent with EQCD. From Sec. 4 we understand that the spectral gap is still
large in this vacuum-like regime. With available lattice data we cannot resolve the onset of a regime
of asymptotic screening in FQQ̄.

6. Asymptotic screening regime

In the asymptotic regime screening is dominated by the magnetostatic scale g2T . Whereas
g2T is formally smaller than the electrostatic Debye mass scale gT , it turns out to be more im-
portant numerically for any physically relevant values of the temperature and the gauge coupling.
The magnetic mass mM ∼ g2T in turn leads to a breakdown of weak-coupling power counting in
diagrammatic descriptions [9]. As a consequence, this regime is inherently non-perturbative.

Long range interactions contributing to the free energies are dominated by one-particle-exchange
processes, thus giving rise to a Yukawa-type interaction ∼ exp [−Mr]/r for a mode of mass M. In
the case of CP these OPE processes concur in some intermediate regime (between electrostatic and
magnetostatic regimes) by two-particle-exchange processes ∼ {exp [−Mr]/r}2.

For multiple reasons we cannot simply study asymptotic screening through a straightforward
fit with Yukawa potential at large values of r. First we have to account for finite volume corrections

8
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Figure 7: Asymptotic screening mass for FS. We observe no statistically significant volume dependence
of mS/T , which is for r ∼ 1/ms close to the NLO Debye mass mD (horizontal lines from left). mS/T stays
somewhat below 2mD/T (horizontal lines from right) in the accessible range for Nτ = 4 (left). The corrected
values of mS/T are shown as solid bands in the left panel and as function of T in the right panel.

since cancellations in Eqs. (2.5) and (2.6) are exact only in infinite volume and may be limited
by statistics. In fact we see a volume dependence by comparing screening functions S1 = −rFsub

with aspect ratios Nσ/Nτ = 6 and Nσ/Nτ = 4. Volume dependence is reduced for larger ensembles
and we successfully model it as a constant offset that we subtract from correlators to bring results
for different aspect ratios into numerical agreement. Second we cannot determine the asymptotic
screening mass through a straightforward fit in the far asymptotic regime due to an exponential
drop of the signal-to-noise ratio. Instead we have to start fitting at intermediate rT values for which
the system is not necessarily beyond the electric screening regime. Hence, we fit Fsub

S and Fsub
QQ̄ as

Fsub(rT,T,a) = A
e−MR

R
+C, R≡ rT (6.1)

and vary both small (Rmin) and large (Rmax) ends of the fit range to obtain a local definition of the
screening mass M = m/T .

In the case of FS the parameter M(Rmin,Rmax) is a monotonically rising function of Rmin and
Rmax that becomes considerably flatter for Rmin� 0.7. Since the dependence on Rmax is rather mild
we average for fixed Rmin over all Rmax that permit good fits for Eq. (6.1) and estimate a systematic
uncertainty from the spread. Even for Fsub

S with Nσ/Nτ = 6 we still observe a non-negligible
increase even for the largest Rmin, cf. left panel of Fig. 7. For Nσ/Nτ = 4 we are not even able
to obtain a stable screening mass for Rmin � 0.7 in many cases. For Rmin ∼ 1/mD the screening
mass is close to the NLO Debye mass, while for rT � 1 the screening mass remains below twice
the NLO Debye mass. We estimate a temperature independent additive correction between the
parameter M for Rmin = 0.5 and for Rmin & 1.0 and take the corrected result as our estimate of the
asymptotic screening mass. We plot this corrected value of the screening mass as function of the
temperature in the right panel of Fig. 7. Although there is a trend to larger values of M towards
the continuum limit, screening masses for all Nτ are numerically commensurable. The temperature
dependence for T > 400MeV and the N f dependence are consistent with the NLO Debye mass.

In the case of FQQ̄ the parameter M(Rmin,Rmax) exhibits no statistically significant dependence
on either Rmin and Rmax beyond Rmin & 0.5. For Nτ = 4 and Nσ/Nτ = 6 we find a monotonic

9
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T [MeV] 421 1687 5814
mQQ̄/T 4.6(1) 4.2(3) 3.9(2)

Table 1: The screening mass of FQQ̄ for Nτ = 4 and Nσ/Nτ = 6 for Rmin = 0.5.

decrease of mQQ̄/T with temperature, see Tab. 1.
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Figure 8: The entropy SQ of a static quark is sensitive to the color screening and deconfinement.

Asymptotically separated quarks eventually decouple completely and any quark-antiquark free
energy approaches 2FQ. We study this asymptotic regime in terms of the entropy of a static quark,

SQ =−dFQ

dT
, (6.2)

which is renormalization-scheme independent in the continuum limit. As the entropy is at lead-
ing order SLO

Q = CFαs(µ)mLO
D (µ)/(2T ), it is a direct probe of the color screening properties of

the thermal QCD medium. SQ is peaked in the crossover region and the peak position TS(Nτ) is
numerically consistent with the peak position Tχ(Nτ) of the chiral susceptibilities on the same set
of ensembles. This suggests that the critical temperatures related to the phase transitions in the
opposite corners of the Columbia plot are smoothly connected, since the entropy and chiral sus-
ceptibilities are primarily sensitive to different aspects of the crossover transition. For lower quark
masses or larger N f , the peak of SQ is less pronounced, cf. the left panel of Fig. 8, suggesting that
the peak may indeed be washed out completely for ensembles close to the chiral limit.

The Polyakov loop and the entropy have been calculated up to NNLO [16]. We have made an
order-by-order comparison to lattice results with Nτ = 4 [6], seeing remarkably poor convergence
at NLO. This can be understood as a consequence of the dominance of the static Matsubara mode
in SQ. First indications of consistency between NNLO and lattice results for Nτ = 4 were seen
for T & 3GeV. With the new ensembles we extend the continuum limit to T & 2GeV and find
consistency with NNLO already for much lower temperatures, T & 1.7GeV as shown in the right
panel of Fig. 8.

7. Conclusions

We study color screening in the quark-gluon-plasma with lattice QCD and weak-coupling
approaches. We extract the continuum limit of the Polyakov loop correlator and related quantities
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in an unprecedented range up to T & 2GeV and perform detailed comparisons to different effective
field theory results at weak coupling. We successfully identify a vacuum-like regime, an electric
screening regime and an asymptotic regime and establish a direct connection to the weak-coupling
calculations and the realization of the assumed hierarchies of scales.
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