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1. Introduction

The critical behavior of baryonic matter (BM) and its transition to anomaly matter (AM),
containing free fields of quarks and gluons at high temperature T and baryon density, has a great
interest, in particular, with scanning over QCD variables to predict the Critical Point (CP). The
latter is characterized by the critical temperature Tc and the critical baryon chemical potential µc.
The large enough baryon density may be a source of spontaneous breaking of space parity of
colliding particles (see, e.g., [1]). This breaking can be manifested in the form of chiral magnetic
effect [2] at non-central collisions of heavy ions. In addition, the local breaking of space parity
(LBSP) of colliding nuclei may lead to anomaly yield of leptonic pairs [3,4]. LBSP may arise
also in case of Bose-Einstein condensation (BEC) of light pseudoscalar particles, e.g., pions. The
appearance of light hadron or even heavier flavor condensates in hot and high density nuclear matter
has not been discovered yet, and this might be one of the goals to the search programs of heavy ion
colliders and accelerators with fixed targets operating at high enough baryon density.

It is known that the selfconsistent description of the critical behavior of a dynamical system in
field theory is given by the renormalization group (RG) (see, e.g., [5-7] and the refs. therein). In
RG approach to field theory the particular case of the phase transition is defined by the presence
and the properties of the fixed points. As an example, the infra-red (IR) attracted fixed point is
relevant to the phase transition of the second kind as well as to the critical scaling. However, the
fluxes (solutions) of RG may leave the physical domain containing the IR fixed point (IRFP). The
solutions may even go to infinity. Such a situtaion can be considered in terms of the phase transition
of the first kind. In the neighborhood of an IRFP the strong coupling constant is

α
IRFP '−2π

b0

b1
, b0 =

1
3
(11Nc−2N f ),

where Nc and N f are numbers of colors and flavors, respectively; b0 and b1 are the coefficients in
the β - function

β (α)≡ µ̄
∂α

∂ µ̄
=− b0

2π
α

2− b1

(2π)2 α
3 + ...

at some scale µ̄ for SU(Nc) gauge theory. The scale of chiral-symmetry restoration and the asso-
ciated deconfinement scale are of the order Λ at which α(µ̄) crosses the critical value αc. If N f

decreases (α IRFP increases) CP is characterized by αc < α IRFP at which the spontaneous breaking
of chiral symmetry is occurred and confinement does appear. Actually, the phase transition does
influence the particle source size.

2. Size of a particle source

One of useful and instructive approaches to study CP is through the spatial correlations of the
final state particles. To observe the effective size of the source of particles produced in, e.g., heavy
ion collisions, one needs to derive the theoretical formulas for two- or multi-particle distribution-
correlation functions and the function of chaoticity of particles. The very popular hydrodynamical
models can only describe the one-particle distribution, but never give any kind of particle number
fluctuations and multi-particle correlations. We have already studied this subject in the frame
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of searching CP through the correlations between identical particles with Bose statistics, Bose-
Einstein correlations (CBE), where the main object is the stochastic scale Lst which defines the
effective evolving size of the source of particles in hot excited matter [8]. Lst depends on the
temperature in the system (bath), the transverse momentum of two correlated particles, and it feels
the influence of random stochastic fields parametrised by the function of chaoticity strength ν

which goes to zero when CP is approached. Lst enters the CBE function C2(q;λ ) in a simple form
(for details, see [9])

C2(q;λ )' η(N)
[
1+λ (ν)e−q2 L2

st

]
(1+δ ·q+ ...), (2.1)

where η(N) = 〈N(N− 1)〉/〈N〉2 gives "event-to-event" fluctuations to particle multiplicity N; q
is the relative momentum between two particles; λ (ν) ' 1/(1+ ν)2, where 0 < ν < ∞ [10]; δ

is the measure of long-range correlation effect. Actually, δ → 0 at large enough space separation
between two correlated particles. On the other hand, in [11] there was reported an anti-correlation
effect in which the measured function C2 attained values below the asymptotic minimum at unity,
similarly to what had previously been observed in e+e− collisions [12]. Phenomenological aspects
of this dip-effect have been noted in [13].

The scaling form (2.1) is useful to predict the behavior of observables as well as to indicate
the vicinity of CP. Note, that Lst → ∞ as T → Tc and µ → µc. The observables may be associated,
e.g., with the transverse momentum kT = |~pT1 +~pT2 | of two Bose particles with momenta |~pTi | =√
~p2

xi
+~p2

yi
, i = 1,2 at high enough T [9]:

k2
T =

1
ν(n)T 3 L5

st
, n(β ) =

1
e(ω−µ)β −1

, pµ = (ω,~p). (2.2)

The results of e+e− collisions at LEP [14] as well as ones at the LHC energies by CMS [11,15],
ALICE [16] and ATLAS [17] experiments were indicated to decreasing of a size of a particle source
with increasing kT which is supported by (2.2) at finite T . The coherence function 0 < λ < 1 in
(2.1) has been measured in many experiments (see, e.g., the refs in [18]. However, it is more
important to study λ theoretically as a function of particle occupation number n at the state with
finite T through the transition from a fully coherent phase (λ ' 0) to the chaotic one (λ ' 1), where
the critical behavior in the phase transition between BM and AM can occur. Thus, one can study
the occurrence of BEC in thermal bath and two-particle momentum correlation as a function of an
energy, (mean) particle multiplicity and the temperature of the system, distorted by the external
fields (the influence of an environement). BEC is a consequence of a hadronization process due to
phase transition from free states of quarks and gluons (the vicinity of CP ) through the mixed phase
state composed of hadrons, quarks and gluons. Sometimes, this is called as the cross-over walk. To
search the phase transition from BM to AM we shall use the approach to random fluctuation walk
with respect to chaoticity in correlations of identical particles.

3. Random fluctuation walk

We start with the model in which the phase transition between BM and AM modelling in

2



P
o
S
(
C
P
O
D
2
0
1
7
)
0
9
3

The Critical Point and particle correlations under thermal stochastic influence Gennady Kozlov

one-dimensional x- oriented axis approach is governed by the probability P(x; λ̄ ,µc)

P(x; λ̄ ,µc) = p
∞

∑
j=0

λ̄
j 1
2

√
π

t

[
e−y2 j

− /4t + e−y2 j
+ /4t
]
, −∞ < x < ∞, (3.1)

where λ̄ is the random fluctuation weigth, y j
± = xµc±a j, the running parameter a = (µ/µc) > 1;

t = lµc, l is the lattice spacing. In the limit l→ 0 ( µc 6= 0 ) one has (see also [19])

P(x; λ̄ ,µc) = p(λ̄ )
∞

∑
j=0

λ̄
j
π
[
δ (xµc−a j)+δ (xµc +a j)

]
, (3.2)

where p(λ̄ ) = (1− λ̄ )/(2π) within the normalization condition 2(p+ λ̄ p+ ...+ λ̄ j p+ ...) = 1,
0 < λ̄ ≤ 1. The r.h.s. of (3.2) is the delta-shaped sequence of the r.h.s. (3.1) in the limit t → 0.
The limit λ̄ → 1 in (3.2) admits the broad behavior of P(x; λ̄ ,µc) that means the vicinity of CP is
approached. Contrary to that, P(x; λ̄ ,µc) will be trivial if λ̄ → 0: P(x; λ̄ → 0)→ 1/(2π).

In order to smooth the particularity of (3.2), one can use its Fourier transformed form G(k; λ̄ ,µc)

which is nothing but the characteristic function. This provides the most convenient way to study
an asymptotic behavior at large enough x (or very sharp increasing of Lst in terms of CBE function
(2.1)) corresponding to the limit k→ 0. The function G(k; λ̄ ,µc) has the form

G(k; λ̄ ,µc) = p(λ̄ )
∞

∑
j=0

λ̄
j cos

(
k
µc

a j
)
, (3.3)

accompanying by the properties: 2π G(0; λ̄ ) = 1, G′(0; λ̄ ) = 0.
The fluctuation length ξ is calculated through the even moments M(2s)(λ̄ ) of the order 2s

ξ
2
(2s)(λ̄ )∼M(2s)(λ̄ ) =

∂ 2sG(k; λ̄ ,µc)

∂k2s |k=0.

Looking through the result

|ξ 2
(2s)(λ̄ )|= p(λ̄ )

∞

∑
j=0

(
a j

µc

)2s

λ̄
j, (3.4)

one can realize that (3.4) does converge at (a/µc)
2s λ̄ < 1 only. In this case |ξ 2| is finite

|ξ 2
(2s)(λ̄ )| ' p(λ̄ )µ

−2s
c
(
1+a2s

λ̄
)
.

However, if µ ' µc and λ̄ is close (but less) to 1 (this is a vicinity of CP), one finds the divergence
of fluctuation length.

Actually, one can find an infinite number of divergent (singular) terms starting from (3.3),
hence the latter does not suitable to describe an arbitrary phase of excited matter (wide values of
0 < λ̄ < 1 and µc, as well as small k compared to µc. To find the non-analytical part of (3.3) at
k = 0 let us start with functional scaling equation (see also [19])

G(k; λ̄ ,µc) = GBM(k; λ̄ ,µc)+GAM(ak; λ̄ ,µc), (3.5)

which is the linear non-homogenious equation, where

GBM(k; λ̄ ,µc) = p(λ̄ ) cos(k/µc), (3.6)
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GAM(ak; λ̄ ,µc) = λ̄ G(ak; λ̄ ,µc). (3.7)

(3.6) is the regular function at k close to zero for all 0 < λ̄ < 1 and it gives the contribution to BM.
The phase with AM is provided by (3.7) at a−2 ≤ λ̄ < 1. The second term in (3.5) disappears if
λ̄ → 0, and the phase with BM does exist only. Here, we take into account that G(ak; λ̄ ' 0,µc)'
(1/2π)cos(kµ/µ2

c ) is finite. The same result at λ̄ ' 0 is expected if one uses (3.3).
Looking through (3.5) - (3.7) λ̄ can be associated with the coherence function λ (ν), introduced

in (2.1), where [8]

ν =
1

nk2
GL

O

(
m2

φ

m2

)
. (3.8)

Here, we have used the fact when CP is approaching, theory becomes conformal provided by the
scalar field, the dilaton φ , with the mass mφ . In (3.8), we use m as a mass of (light) hadrons which
are in the pattern of CBE; kGL = mφ/mB is the Ginzburg-Landau parameter which can differ the
vacuum of type-I ( kGL < 1) from those of type-II ( kGL > 1) in dual Higgs-Abelian gauge model
with dual (to non-abelian gluon field Aa

µ(x)) gauge field Ba
µ(x) with the mass mB (for details see

[8,13]. CP is characterized by kGL→∞ because of infinite fluctuation length ξ ∼m−1
B . The second

central moment (dispersion) M2 of (3.2) will be divergent at λ → 1, thus the fluctuation length (the
effective radius of the flux tube) ξ ∼

√
|M2| →∞. The finite values of ξ will provide the analytical

form of G(k;λ ,µc), however the very large fluctuation length gives the non-analytical behavior of
G(k;λ ,µc) at k→ 0. The dual QCD vacuum (through kGL) will infuence ξ up to cross-over which
is the unified process of phase transition between BM and AM.

In some sense, G(k;λ ) can be understand in terms of CBE function (2.1) in the form

G(k;λ ,µc) =
2−C̄2(0)

2π

∞

∑
j=0

[
C̄2(0)−1

] j cos
(

k
µc

a j
)
, (3.9)

where C̄2(0)≡ C̄2(q= 0;λ ) =C2(q= 0;λ )/η(N) which can be extracted from an experiment. The
divergence of (3.9) is expected if C̄2(0)→ 2 at high multiplicities N.

The characteristic feature of the model is the fluctuation length (3.4) and its analytical and
non-analytical behavior at all possible 0 < λ < 1 and µc. The solution for BM can be considered
in the form of Taylor’s expansion [19]

GBM[k;λ (S),µc] = 1+
S−1

∑
s=1

(−1)s 1
(2s)!

ξ
2
(2s)[λ (S)]k

2s, (3.10)

which is regular at 0 < λ < 1 with finite S (S→ ∞ as λ → 0). The rest term for AM is singular for
ξ 2
(2s) at s≥ S:

GAM[k;λ (S),µc] = 1+
∞

∑
s=S

(i)2s 1
(2s)!

ξ
2
(2s)[λ (S)]k

2s. (3.11)

Actually, for some values of λ (S) at given S with k→ 0 the rest (singular) term (3.11) can give the
main contribution to (3.5) and, thus, shall define the asymptotic behavior of G(k;λ ,µc) at k→ 0
and, consequently, the probability P(x;λ ,µc) in (3.2) at x→ ∞. The latter is in the correspondence
with the infinite size of the particle source in terms of CBE at CP.
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The special singular solution for AM may be presented in the k-power form [19]. Neglecting
BM term (3.6) in (3.5) the infinite series (3.11) with the integer even powers 2s of k is replaced by

GAM[k;λ (S),µc] =C[λ (S)]
∣∣∣∣ k
µc

∣∣∣∣r[λ (S)] Q(|k|), (3.12)

where r is restricted in some interval of S to be defined later. For any finite value λ from an open
interval (0,1) there will be the finite value S(λ ) from the semi-open interval [0,1), consequently,
the inverse function λ (S) does exist as well. The values of ξ 2

(2s)(λ ) are finite for 0 < λ < 1 if

s = 1,2, ...,S−1, and they will diverge if s≥ S. So, the series (3.10) is brought to the term k2(S−1).
Inserting (3.12) into the reduced homogenious equation (3.5) for AM, one finds

r[λ (S)] =
ln
[

Q(|k|)
Q(a|k|)·λ (S)

]
lna

, a > 1.

Actually, Q(a|k|) is the associated function of the 1st order to the measure γ with the proper func-
tion of the operator of dilatation transformation u, uQ(|k|) = Q(a|k|). For any a ≥ 1 the function
Q(a|k|) obeys the following condition [20]

Q(a|k|) = aγ Q(|k|)+aγ ln(a) · Q0(|k|),

where Q0 is the homogenious function of the measure γ . For a close to unity (from above) one
finds

r[λ (S)] =−
[

lnλ (S)
lna

+ γ

]
.

The singularity of (3.12) is supported by the inequality

2(S+1)− γ lna≥ r(S)> 2S− γ lna.

The coefficient C[λ (S)] in (3.12) is

C[λ (S)] =
ir−2

Γ(r−1)
ξ

2
(r−2)(λ ).

The solution for Q(|k|) in (3.12) obeying the functional dilatation equation uQ(|k|) ' Q(a · |k|)
contains the smoothly changing function which will be, e.g., the logarithmic-periodic function
with the period log(a) > 0. If one replaces |k| → log(|k|), a · |k| → log(a)+ log(|k|), the solution
of corresponding log-periodic equation is the infinite series

Q(|k|)∼ 1
log(a)

∞

∑
m=0

bm cos
[

2πm
log(|k|)
log(a)

+ϕm

]
,

where bm and ϕm are coefficients and the phases, respectively, which are not important for the
model considered here. Thus, the solution for AM looks like

GAM(k;λ ,µc)∼
ir−2

Γ(r−1)
ξ

2
(r−2)(λ )

∣∣∣∣ k
µc

∣∣∣∣r 1
log(a)

∞

∑
m=0

bm cos
[

2πm
log(|k|)
log(a)

+ϕm

]
, (3.13)
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which is divergent if λ → 1 (because of ξ 2), and a→ 1 from above (because of log(a) in the
denominator of (3.13). The upper limit of the critical chemical potential is

µc ≤ µ

[
1+

1
nk2

GL
O

(
m2

φ

m2

)]−1

and the cross-over (µ = µc) does occur when kGL→∞. The AM solution disappears if r(S)/S→ 2
as S→ ∞ at λ (S)→ 0.

4. Conclusions

The theoretical search for CP, in paricular, the cross-over between BM and AM, is studied
in one-dimensional model of random fluctuation walk accompanied by the known model of CBE.
The main points here are the random fluctuation weight λ̄ in (3.1), the even moments of G or
the fluctuation length squared ξ 2, and the running parameter a > 1. λ̄ is the stochastic random
function λ (ν) which defines the strength of correlations between two identical particles with Bose-
statistics. This depends very strongly of the vacuum properties characterized by Ginzburg-Landau
parameter kGL. It is shown that the solution is given in terms of the regular and the singular parts
corresponding to BM and AM, respectively. The smooth λ provides BM, however, if λ → 1 (very
strong influence of chaoticity) the asymptotic behavior at k→ 0 (or the probabiilty P(x) for x→∞)
is approached. The latter corresponds to infinite size Lst of a particle source .
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