Abstract:
The pulsed radiation from PSR B0833-45 (Vela) has a phased-averaged spectral energy distribution of apparently simple structure across a wide energy range. However, in narrow energy bands the pulses reveal astonishing complexity in the directional pattern of the radiation. We present the results of a 3D modeling of the Vela radiation properties in the scenario when outer gap accelerator coexists with an inner gap accelerator, as they occupy different magnetic field lines. We show how the synchrotron emission as well as the inverse Compton scattering of soft photons by secondary e±-pairs in its magnetic and non-magnetic regimes reproduces qualitatively the observed energy-dependent pulses of Vela. Moreover, we present how ICS of soft synchrotron photons by primary particles can form a pulsed spectral component in the VHE domain. The flux of this component can be within reach by the Cherenkov Telescope Array for more than 50h of observation.
Three-component Model of the MWL lightcurves and the spectral component in the VHE domain in the Vela pulsar

Component 1: Outer Gap
We use retarded dipolar magnetosphere in vacuum approximation. The numerical 3D code calculates curvature radiation (CR) from primary charges in the inertial observer frame (IOF) as described in [3] and [2]. The charges (primary e±) are subject to accelerating electric field assumed to be constant in the gaps. The primaries (blue arrows in Cartoon) reach Lorentz factors $\gamma \sim a \times 10^7$, and the CR cooling is included to obtain realistic Lorentz factors. These are then used to calculate the inverse Compton scattering (ICS) of primaries with SR photons in the optical-infrared domain. The model doesn’t follow pair creation due to interaction of CR photons with a soft-photon field. Instead, we assume that secondary e± of $\gamma \sim 10^2 - 10^3$ are formed in a layer which is attached to (placed on top of) the outer gap layer (green arrows in Cartoon). These pairs are the source of the soft photon field - synchrotron radiation (SR) which extends across the wide energy range, from hard X-rays to UV to optical and likely to far IR (0.001 eV). To determine directional characteristics of the SR radiation which would agree with the observed pulses from Vela, we start first with the geometrical version of OG [3]. The geometrical model assumes a uniform distribution of emissivity in the energy range of interest. Therefore, for a given location of the layer in terms of the magnetic-line footprints on the polar cap, the properties of the pulses of radiation (CR in the case of the gap, or SR in the case of the secondary-pairs layer) will be a function of two angles: the inclination angle α of the magnetic axis with respect to the spin axis, and the viewing angle ζ between the line-of-sight and the spin axis.

Component 2: Inner Gap coexisting with the Outer Gap
The e±-pairs (red arrows in Cartoon) of $\gamma \sim 10^2 - 10^3$ are assumed to be created in the inner part of open magnetic field-lines, concentrated around the magnetic axis. The outer gap and its adjacent SR layer occupy about 20% (in terms of the polar cap radius) of the open magnetic-field lines. The inner part of polar cap is thus able to develop a potential drop across it, high enough to lead eventually to creation of electron-positron pairs. A narrow radio pulse ("a core" emission) present in Vela speaks in favour of this picture.

Component 3: Blackbody soft X-rays
The field of thermal soft X-ray photons, with $T_{bb} = 10^6 K$ and luminosity $L_X = 2 \times 10^{32}$ erg/s from the pulsar surface [6].

Component 2: Inner Gap coexisting with the Outer Gap
The e±-pairs (red arrows in Cartoon) of $\gamma \sim 10^2 - 10^3$ are assumed to be created in the inner part of open magnetic field-lines, concentrated around the magnetic axis. The outer gap and its adjacent SR layer occupy about 20% (in terms of the polar cap radius) of the open magnetic-field lines. The inner part of polar cap is thus able to develop a potential drop across it, high enough to lead eventually to creation of electron-positron pairs. A narrow radio pulse ("a core" emission) present in Vela speaks in favour of this picture.

Component 3: Blackbody soft X-rays
The field of thermal soft X-ray photons, with $T_{bb} = 10^6 K$ and luminosity $L_X = 2 \times 10^{32}$ erg/s from the pulsar surface [6].

*For more details see [11].
Three different ICS processes were considered in an attempt to explain the existence of specific features in the Vela’s non-thermal radiation:

1. primary electrons in the gap interacting with optical-infrared photons originating from the SR layer,
2. inner PC pairs interacting with optical-infrared photons originating from the SR layer,
3. inner PC pairs interacting with thermal X-ray photons from the neutron star surface.

These processes are expected to lead to the formation of, respectively:

1. spectral component in the VHE range (a prediction),
2. core-like pulse (known as P4) detected in optical as well as in UV ([4], [9]) at the phase of the radio core pulse,
3. core-like pulse detected in hard X-rays ([8]) at the phase of the radio core pulse (see also [5]).
Summary

In the optical-UV and the hard X-rays domains:
If an inner gap with e⁻e⁺ pairs coexists with outer gaps, then
- core-like pulses can form in optical, UV and hard X-rays,
- they are in phase with the core-like radio pulse.

In the VHE domain:
- Formation of pulsed VHE-spectral component is possible in the Vela pulsar in the case of high inclination angle,
- its lightcurve would consists of two pulses at the phases ~0.2 and ~0.6,
- its expected phase-averaged flux can be within reach by CTA South for > 50h.

References

Acknowledgements: This contribution was partially supported by the National Science Centre grant no. 2016/22/M/ST9/00583.