Differences Between Radio-loud and Radio-quiet Gamma-ray pulsars as revealed by Fermi

C.Y. Hui1, Jongsu Lee1, J.Takata2, C. W. Ng3 & K. S. Cheng3

1Department of Astronomy and SpaceScience, Chungnam National University, Daejeon, Republic of Korea
2Institute of Particle physics and Astronomy, Huazhong University of Science and Technology
3Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong

\begin{itemize}
 \item By comparing the properties of non-recycled radio-loud γ-ray pulsars and radio-quiet γ-ray pulsars, we have searched for the differences between these two populations. We found that the γ-ray spectral curvature of radio-quiet pulsars can be larger than that of radio-loud pulsars. Based on the full sample of non-recycled γ-ray pulsars, their distributions of the magnetic field strength at the light cylinder are also found to be difference.
\end{itemize}
Another interesting result is the comparison for magnetic field between two populations. The distribution and statistical test was not shown the difference in $B_{Surface}$, while we can show the definitely difference in $B_{Light cylinder}$.

B_{LC} is function of P and \dot{P}. To investigate if the difference in B_{LC} is caused by the distributions of their rotational parameters, we have also applied the A-D test separately on P (p-value~0.006) and \dot{P} (p-value~0.2).

Since $B_{LC} \sim B_S P^{-3}$, the differences between radio-loud and radio-quiet populations should stem from the rotational period P. We noted that P of radio-loud pulsars are generally smaller than radio-quiet pulsars.

Therefore, shorter period pulsars will have wider radio cone and hence more favorable to be radio-loud. And thence the radio-quietness in the pulsar population might be a result of their narrower radio cones.
In re-examining the distributions of nominal values of \(\frac{F_Y}{F_X} \), we confirmed the difference between the radio-loud and radio-quiet pulsars as claimed by Marelli et al. (2015).

Concerning the difference in \(\frac{F_Y}{F_X} \), we consider a geometric effect together with assumption that the X-ray are coming from the regions near the polar cap.

In this case its intensity \(F_X^{PC} \) should depend on the angle between the magnetic axis and the viewing angle \(\theta \), namely \(F_X^{PC} \propto \theta \).

Then radio-loud pulsars should have smaller \(\theta \) than those radio-quiet pulsars.

This implies the mean \(F_X \) of radio-loud pulsars is larger than that of the radio-quiet pulsars.
 relation spearman probability

<table>
<thead>
<tr>
<th>relation</th>
<th>spearman</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>radio-loud pulsar population</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>$E_{\text{cut}} \text{ vs } B_{\text{LC}}$</td>
<td>0.7</td>
<td>2×10^{-6}</td>
</tr>
</tbody>
</table>