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We use observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL)
to search for gamma-ray and hard X-ray emission associated with the gravitational wave events
discovered during the first and the second scientific runs of Advanced LIGO and Advanced
Virgo. The highly eccentric orbit of INTEGRAL ensures high duty cycle, long-term stable
background, and unobstructed view of nearly the entire sky. This enables us to use a com-
bination of INTEGRAL instruments (SPectrometer onboard INTEGRAL - Anti-Coincidence
Shield (SPI-ACS), Imager on Board the INTEGRAL Satellite (IBIS), and IBIS/Veto) to search
for a hard X-ray electromagnetic signal in the full high-probability sky region for almost every
single LIGO trigger.
INTEGRAL observations of the binary black hole (BBH) mergers GW150914, LVT151012,
GW170104, and GW170814 allowes to constrain the fraction of the energy promptly released
in gamma-rays in 75 keV - 2 MeV energy range in the direction of the observer down to as lit-
tle as one millionth of the gravitational wave energy, in the majority of the localization region.
Moreover, in the case of LVT151012 INTEGRAL high-energy imaging instruments, IBIS, SPec-
trometer onboard INTEGRAL (SPI), and Joint European X-Ray Monitor (JEM-X), provided the
unique opportunity to search also for long-lasting electromagnetic counterparts of this event over
3 decades in energy, from 5 keV to 8 MeV.
Finally, we discuss the INTEGRAL detection of the short gamma-ray burst GRB 170817A (dis-
covered by Fermi-Gamma-ray Burst Monitor (GBM)) with a signal-to-noise ratio of 4.6, and, for
the first time, its association with the gravitational waves (GWs) from binary neutron star (BNS)
merging event GW170817 detected by the LIGO and Virgo observatories. The significance of as-
sociation between the gamma-ray burst observed by INTEGRAL and GW170817 is 3.2 σ , while
the association between the Fermi-GBM and INTEGRAL detections is 4.2 σ . GRB 170817A
was detected by the SPI-ACS instrument about 2 s after the end of the gravitational wave event.
We measure a fluence of 1.4±0.4±0.6×10−7 erg cm−2 (75–2000 keV), where, respectively, the
statistical error is given at the 1 σ confidence level, and the systematic error corresponds to the
uncertainty in the spectral model and instrument response.

7th Fermi Symposium 2017
15-20 October 2017
Garmisch-Partenkirchen, Germany

∗Speaker.



P
o
S
(
I
F
S
2
0
1
7
)
0
5
8

INTEGRAL follow-up of the gravitational wave events V. Savchenko

1. Introduction

Gravitational waves (GWs) were predicted as a natural consequence of general relativity [1],
but until recently only indirect evidence of their existence had been found by measuring the time
evolution of orbital parameters in binary pulsars [2, 3]. The first direct detection of GWs was
achieved with the discovery of GW150914 [4] during the first science run of the Advanced LIGO
interferometer (O1). This observation was followed by the observation of several other events of
different significance [5].

The INTErnational Gamma-Ray Astrophysics Laboratory [INTEGRAL; 6] team participated
in the search for electromagnetic counterparts of almost all of the LIGO/Virgo events, providing
the tightest upper limits for the whole GW localization region above 75 keV. The only GW event so
far during which INTEGRAL was not taking scientific data is GW151226, which happened when
INTEGRAL was in the proximity of one of the perigee passages1. Slightly before and after each
of these passages, all instruments on board INTEGRAL are switched off to prevent damage while
crossing the Earth’s radiation belts, thus limiting the observational efficiency of the observatory
(“duty cycle”) to 85%.

2. INTEGRAL instrument summary

INTEGRAL [7] is an observatory with multiple instruments: a gamma-ray spectrometer (20 keV–
8 MeV, SPI, [8]), an imager (15 keV–10 MeV, IBIS, [9]), an X-ray monitor (3–35 keV, JEM-X,
[10]), and Optical Monitoring Camera (OMC) [V band, 11].

The spectrometer SPI is surrounded by a thick Anti-Coincidence Shield (SPI-ACS). In ad-
dition to its main function of providing a veto signal for charged particles irradiating the SPI in-
strument, the ACS is also able to register all other impinging particles and high-energy photons.
Thus, it can be used as a nearly omnidirectional detector of transient events with an effective area
reaching 0.7 m2 at energies above ∼75 keV and a time resolution of 50 ms [12]. The characteriza-
tion of its response to a gamma-ray signal has been delivered with an extensive simulation study,
taking into account the complex opacity pattern of materials, which are used for the INTEGRAL
satellite structure and other instrument detectors. Similarly, we have computed and verified the re-
sponse of the other omnidirectional detectors on board INTEGRAL: IBIS/ISGRI, IBIS/PICsIT and
IBIS/Veto. For details on the INTEGRAL capabilities of detecting transients from the whole sky,
particularily as relevant to our search for electro-magnetic counterparts to GW signals, we refer to
[13] and references therein.

3. Observations of the BBH mergers

Electromagnetic counterparts of GW events are mainly expected if at least one neutron star is
involved [see, e.g., 14, 15, 16]. However, it cannot be excluded that the merging of black holes
could produce an electromagnetic signal under particular conditions ). To promote the searches
for possible electromagnetic counterparts of GW events, the LIGO/Virgo collaboration distributes
near real time alerts to selected teams who have signed a memorandum of understanding. These

1The INTEGRAL satellite orbital period was reduced from 3 to 2.6 sidereal days in January 2015.
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alerts contain a localization probability map for each event and have so far led to a massive follow-
up campaign of GW150914, GW151226, GW170104, and GW170814 [17, 18, 19, 20, 21, 22,
23, 24, 25]. In the case of LVT151012, the localization was distributed to the community only 6
months after the event. No extensive follow-up observations have thus been performed, and only
serendipitous data sets are available from all relevant facilities.

As extensively described by [13], INTEGRAL provides uniquely instantaneous coverage of
the entire high-energy sky by taking advantage of the synergy between its all-sky detectors: IBIS
(comprising INTEGRAL Soft Gamma-Ray Imager (ISGRI), PIxellated CsI Telescope (PICsIT),
and Veto shield of the Imager on Board the INTEGRAL Satellite (IBIS/Veto)) and SPI-ACS. These
provide complementary capabilities for the detection of transient events characterized by different
durations, locations on the sky, and spectral energy distributions. In the case of the GW150914,
GW170104, and GW170814 the most stringent upper limit on the non-detection of an electromag-
netic counterpart with INTEGRAL was obtained with the SPI-ACS [26, 27], while the peculiar
localization of LVT151012 [5] and its orientation with respect to the INTEGRAL satellite required
the combination of the results from all detectors (together with a careful analysis of each instru-
ment’s response and background) to achieve an optimized upper limit.

(a)
(b)

Figure 1: (a) Estimated 3σ upper limits on the 75-2000 keV flux of the non detected electromag-
netic counterpart to GW170104 as derived from the SPI-ACS data assuming the case of a short-hard
burst [see 27, for details]. The black contours show the most accurate localization of the GW event
at 50% and 90% c.l., as provided by the LALInference [28].
(b) Same (a) but in the case of a long-soft [see 29, for details] burst at the time of LVT151012.

4. GW170817 and GRB170817A

It has long been conjectured that the subclass of gamma-ray bursts (GRBs) with a duration
below about 2 s, known as short gamma-ray bursts (sGRBs), are the product of a BNS merger
and that gamma-rays are produced in the collimated ejecta following the coalescence [e.g, 30, 31,
32, 33]. So far, there was only circumstantial evidence for this hypothesis, owing to the lack of
supernovae associated with sGRBs, their localization in early-type galaxies and their distinct class
of duration [e.g., 34]. The advent of advanced GW detectors, which have been able to detect binary
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black hole mergers [35, 36, 37, 38, 39], and have the capability to detect a signal from nearby BNS
mergers [40] have sparked great expectations. Different electromagnetic signatures are expected
to be associated with BNS merger events, owing to expanding ejecta, the most obvious of which
is an sGRB in temporal coincidence with the GW signal and/or afterglow emission at different
wavelengths in the days and/or weeks after the merger event [e.g., 41].

On n 2017 August 17 a at 12:41:04.47 UTC (T0,GW hereafter), a signal consistent with the
merger of a BNS was detected by the LIGO-Hanford detector [42] as a single-detector trigger. The
subsequent alert was issued in response to a public real-time Fermi GBM trigger on a sGRB at
12:41:06.48 UTC [43, 44, 45]; the GRB signal was immediately and independently confirmed by
our team [46].

A massive follow-up campaign of the LIGO-Virgo high-probability region by optical robotic
telescopes started immediately after the event and on 2017 August 18 between 1:05 and 1:45 UT,
three groups reported independent detections of a transient optical source at about 10 arcsec from
the center of the host S0 Galaxy NGC 4993; this source was dubbed SSS17a [47, 48] or DLT17ck
[49, 50]; the transient source was confirmed by [51] [see also 52]. The source was identified as the
most probable optical counterpart of the BNS merger [53, 54]. After that, it was followed at all
wavelengths. The counterpart has been given the official IAU designation “AT2017gfo” [55].

The details of the detection of GRB 170817A by the INTEGRAL and the targeted follow-
up observing campaign can be found in [56]. We also were able to search for any possible hard
X-ray / soft gamma-ray emission for about six days after the prompt gamma-ray and GW signal.
This allowed us to constrain both continuum emission from GRB-like afterglow emission and line
emissions expected from kilonovae.

The orientation of INTEGRAL with respect to the LIGO-Virgo localization of GW170817
favored the observation by SPI-ACS and was such that the sensitivity of the IBIS was much lower
in comparison [56]. For comparison of relative sensitivities of different INTEGRAL instruments
see [29]. The routine untargeted search for short transients in SPI-ACS identified a single excess
at T ACS

0 = T GW
0 + 1.88 s with signal-to-noise ratio (S/N)= 4.6 at the 0.1 s timescale. We derive a

fluence estimate of (1.4± 0.4)× 10−7 erg cm−2 (statistical uncertainty only) in the 75–2000 keV
energy range, consistent with GBM. The significance of the association between the GBM obser-
vation of GRB170817A and the event observed by SPI-ACS is 4.2σ . While SPI-ACS would not
have alone reported this event as a gamma-ray burst (GRB), it would have reported the event while
searching around GW170817, with an independent association significance of 3.2σ [56]. short-
duration gamma-ray bursts (SGRBs) are routinely jointly detected by GBM and SPI-ACS and the
association evidence from time coincidence (quoted above) as well as the consistency between the
event fluences and temporal properties observed by the two instruments proves that both GBM
and SPI-ACS observed the same event. The difference between the time of arrival of the signal
in the SPI-ACS and GBM detectors can be exploited to improve the gamma-ray localization of
GRB170817A, which may be beneficial in future joint detections.

The significant interval of the SPI-ACS lightcurve of GRB170817A is limited to a single pulse
with a duration of 100 ms (Fig. 2a). GBM and SPI-ACS see the main pulse as appearing to have
different durations because they are sensitive in different energy ranges. If the GBM data are
shown in an energy range higher than the standard 50-300 keV, the main pulse is consistent with
the 100 ms interval seen in SPI-ACS. The lightcurve observed by SPI-ACS reveals a short rise

3
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time (< 50 ms) and a rapid drop (< 50 ms). We therefore constrain the pulse duration in the energy
range observed by SPI-ACS (∼ 75–2000 keV) to less than 100 ms.

(a)

(b)

Figure 2: (a) SPI-ACS light curve of GRB 170817A (100 ms time resolution), detected 2 seconds
after GW170817. The red line highlights the 100 ms pulse, which has an S/N of 4.6 in SPI-ACS.
The blue shaded region corresponds to a range of one standard deviation of the background.
(b) Average hard X-ray/gamma-ray spectrum of the initial pulse of GRB 170817A. The shaded
green region corresponds to the range of spectra compatible with the INTEGRAL/SPI-ACS ob-
servation (see text for details). IBIS/PICsIT provides a complementary independent upper limit
at high energies; see text. The best-fit Fermi-GBM model for the spectrum in the same interval
(Comptonized model with low-energy index of -0.62 and Epeak of 185 keV) is shown as a dashed
line for comparison [57].

5. Conclusions

Most of the GW events reported so far by LIGO were found to be most likely associated with
binary back hole mergers. The extensive multi-wavelength follow-up campaigns carried out after
each of these discoveries led to the detection of at least two possible electromagnetic counterparts
to the GW events [58, 59]. Although none of these associations was firmly confirmed, they led
to discussion of exotic scenarios in explaining EM emission in these mergers [e.g. 60, 61, 62, 63].
The INTEGRAL efforts to follow-up as much as possible all relevant LIGO triggers will eventually
help to revealing which, if any, of these scenarios is applicable. So far, the INTEGRAL results have
provided the most stringent upper limits on any associated prompt hard X-ray and γ-ray emission
above ∼75 keV for each of the announced GW events when INTEGRAL observation was available.

Finally, we reported the independent INTEGRAL detection of a short gamma-ray burst (GRB
170817A), in coincidence with that found by Fermi-GBM [64, 65, 66] (the association significance
between INTEGRAL and Fermi-GBM is 4.2 sigma), which is for the first time unambiguously
associated to the gravitational wave event GW170817 observed by LIGO/Virgo and consistent
with a binary neutron star merger. The joint gamma-ray and GW observation is a turning point for
multi-messenger transient astrophysics.
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This observation is compatible with the expectation that a large fraction (if not all) BNS merg-
ers might be accompanied by a prompt gamma-ray flash [66], detectable by INTEGRAL/SPI-ACS
and other facilities. INTEGRAL independently detects more than 20 confirmed sGRBs per year
[67]) in a broad range of fluences. With the growing sensitivity of the LIGO and Virgo observa-
tories, being joined in the future by other observatories, we expect to detect more and more short
GRBs associated with BNS mergers.

Additionally, we have exploited the unique uninterrupted serendipitous INTEGRAL observa-
tions available immediately after GRB 170817A/GW170817 (lasting about 20 ks), as well as ded-
icated targeted follow-up observations carried out by INTEGRAL, starting as soon as 19.5 hours
after the GRB/GW (lasting in total 5.1 days). No hard X-ray or gamma-ray signal above the back-
ground was found. By taking advantage of the full sensitivity and wide FoV of the combination
of the IBIS, SPI, and JEM-X instruments, we provide a stringent upper limit over a broad energy
range, from 3 keV up to 8 MeV. The INTEGRAL upper limits above 80 keV are tighter than those
set by any other instrument and constrain the isotropic-equivalent luminosity of the soft gamma-
ray afterglow to less than 1.4×1043 erg s−1 (80–300 keV), assuming a distance of 40 Mpc to the
source Our data exclude the possibility that a short- or a long-lasting bright hard X-ray and/or soft
gamma-ray phase of activity followed GRB 170817A/GW170817.

With these results, we show that INTEGRAL continues to play a key role in the rapidly emerg-
ing multi-messenger field by constraining both the prompt and delayed gamma-ray emission asso-
ciated with compact object mergers.
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