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The fireball model of gamma-ray bursts [1, 2, 3] assumes that a large amount of energy is
released in a compact region of typical size r ∼ 107 cm. The nature of the energy released is
often assumed to be in the form of photons end electron-positron pairs. Yet, alternative scenarios
assume that the energy released by the central engine of GRBs is mostly magnetic [4, 5, 6]. Once
the energy is released, the jet is accelerated to relativistic speeds through magnetic or thermal
pressure. Dissipation of energy if required to explain the non-thermal emission of GRBs. This can
be achieved through magnetic reconnection [7, 8, 9] or shocks [3, 10, 11].

Observationally, clues on the magnetic content of GRB jets have been scrutinized for. As
an example, it was argued that the absence of a black-body in the time-resolved spectra of GRB
080916C, one of the brightest GRB ever observed, is a clear smoking gun for a magnetized outflow
[12]. Indeed, the more luminous the GRB, the more intense the black-body component should
be. In the context of internal shocks scenarios, because of their low radiative efficiency, the lack
of thermal component was explained by requiring that a large fraction of the total energy of the
burst be magnetic [13]. The ICMART model [14] combines magnetized and thermal acceleration
to explain the different observed spectra.

Not only the prompt phase was scrutinized, as additional constraints on the magnetization of
jets can also be found in the afterglow. In fact, an x-ray plateau followed by a sharp decay1 has been
frequently observed. It was argued that such a decrease in the observed flux could be attributed to
the collapse of a central engine, like a pulsar, which was powering the emission of the plateau with
its spin-down luminosity [15, 16, 17].

It has been proposed that GRBs central engine could be highly magnetized compact objects
such as neutron star or black-hole [7, 18]. In such case, a striped wind can be created if the
rotational axis and the dipole moment of the central object are not aligned. Acceleration to high
Lorentz factor is powered by reconnection of the magnetic field. A schematic representation of
the striped wind at large distances from the compact object is provided on Figure 1. It consists of
regions of alternating magnetic polarity, separated by current sheets. If the striped wind has been
extensively studied in the context of pulsar [19, 20], the effects of radiation have been neglected, but
they are expected to be important in the context of GRBs. A detailed derivation of the dynamics
can be found in [21], in which the effect of radiation on the striped wind are studied. Here, we
present only the results.

The effects of radiation are most apparent in the pressure balance condition of the current sheet

ncskBTcs +
athT 4

cs

3
= nmkBTm +

athT 4
m

3
+

B2

8π
(1)

where n is the number density, kB is the Boltzmann constant, ath is the radiation constant and B
is the magnetic field strength. In addition, subscript cs and m represent the current sheet and the
magnetized region respectively. It is also assumed that the radiation is in thermal equilibrium.

Two scenarios are found relevant in the context of GRBs. If radiation (mainly produced in
the current sheet) cannot diffuse in the magnetized region, and remains in the current sheet, then
Tcs � Tm. In this case I, the pressure balance is satisfied by the radiation pressure. However, if
diffusion of photon through the current sheet is efficient, then Tcs ' Tm and the pressure balance
condition is satisfied by the gas pressure, requiring ncs � nm (case II). Figure 2 illustrates the

1With power-law temporal index larger than 3.
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Figure 1: Details of the small length-scale structure of the striped wind: magnetized regions (in blue) of
alternating polarity are separated by dense current sheets (in red). Both the pressure p and the entropy h
have contributions from the gas and from the radiation: pi = pi,g + pi,rad and h

′
i = h

′
i,g +h

′
i,rad. In addition, ~j

and ~B are the current and the magnetic field. The outflow is moving at relativistic speed with Lorentz factor
Γ. Finally, ∆ is the relative width of the current sheet and l0 is the wavelength of the striped wind.

difference between case I and case II. If the radial evolution of the Lorentz factor and temperature
are similar in both cases, the ratio of densities ncs/nm and the width ∆ of the current sheet are very
dissimilar.

In the context of GRBs, the problem is fully parametrized as function of the isotropic energy
L, the maximum Lorentz factor Γmax, the size of one period of the striped wind l0 and the product
between the rate of magnetic reconnection ε and the rotation period of the magnetized compact
object Ω, leading to the parameter (εΩ). The radius at which the outflow becomes optically thin,
which is the limit up to which our model is valid is given by

rph =

 6.8×1011 L
3
5
52(εΩ)

− 2
5

3 Γ
−1
max,3 cm case I,

7.0×1011 L
3
5
52(εΩ)

− 2
5

3 Γ
−1
max,3 cm case II.

(2)

The radius at which diffusion through the current sheet becomes efficient for case I is given by

r∆
D,I = 6.05×1010 L

3
5
52(εΩ)

4
5
3 l

6
5
0,7Γ

−1
max,3 cm. (3)

In the context of GRBs, the expansion of the outflow is described by case I, up to r∆
D,I. Above this

radius, photon pressure in the current sheet drops because of diffusion. The current sheet shrinks,
its density increases and the transition is made to Case II.

Thanks to the large density in the current sheet, photon production through the Bremsstrahlung
process is found to be efficient up to the radius

r∆
ff,II = 2.2×1011L

5
9
52(εΩ)

1
9
3 l

16
27
0,7Γ

− 20
27

max,3 cm. (4)

This radius is slightly smaller than the photospheric radius rph. As such, photon production remains
efficient almost up to the transparency. This could be a possible way to solve the photon starvation
problem in the context of photospheric emission of GRBs [22, 23].

To conclude, I explain that several observations and theoretical arguments require the jet of
(some) GRBs to be magnetized. Then, I discussed a model of magnetized outflow, based on the
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Figure 2: From top left to bottom right, radial evolution of the Lorentz factor Γ, of the current sheet width
∆, of the ratio of densities ncs/nm, and of the temperature T . The blue and purple dashed lines represent the
approximations derived in [21], with the corresponding equation number. Finally, the vertical blue dashed
lines represent the beginning and end of the acceleration. Here R = r/rL is the normalized radius, where rL

is the radius of the light-cylinder.

striped wind. It is produced by the rotation of a magnetized compact object. Particular attention
was paid to the effects of radiation on the structure of the wind. I also discussed photon production
mechanisms in this context, showing that Bremsstrahlung remains efficient almost up to the photo-
sphere, which could provide a solution to the photon starvation problem in photospheric emission
model for GRBs. The full derivation of the results can be found in [21].
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