Main Image
Volume 312 - 7th International Fermi Symposium (IFS2017) - Session Other Transients
J.M. Burgess
Full text: pdf
Supplementary files
Published on: 2017 December 12
The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB 141028A, is analyzed under the guise of an external shock model. First, we fit the gamma-ray spectrum with a two-component photon model, namely, synchrotron+blackbody, and then fit the recovered evolution of the synchrotron vFv peak to an analytic model derived considering the emission of a relativistic blast wave expanding into an external medium. The prediction of the model for the vFv peak evolution matches well with the observations. We observe the blast wave transitioning into the deceleration phase. Furthermore, we assume the expansion of the blast wave to be nearly adiabatic, motivated by the low magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the νFν peak. Under this scenario, we argue that the distinction between prompt and afterglow emission is superfluous as both early-time emission and late-time emission emanate from the same source. While the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained by an external shock origin of their prompt phase.
Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.