PoS - Proceedings of Science
Volume 312 - 7th International Fermi Symposium (IFS2017) - Session Stellar Sources (galactic and extragalactic)
Towards the emerging source class of γ-ray emitting colliding-wind binary systems
K. Reitberger*, R. Kissmann, A. Reimer, O. Reimer  on behalf of the Fermi-LAT Collaboration
Full text: pdf
Pre-published on: December 12, 2017
Published on: November 11, 2020
Abstract
Recently published results using seven years of Fermi-LAT data shed new light on the still puzzling source class of particle-accelerating colliding-wind binary (CWB) systems.
While the claimed association of the system $\gamma^2$ Velorum (WR 11) with a high-energy $\gamma$-ray source contrasts the exclusivity of $\eta$ Carinae as the hitherto only detected $\gamma$-ray emitter of that sort, the low upper limits obtained for WR 140 strengthen the question why this system with all its similarities to the $\gamma$-ray bright $\eta$ Carinae remains still unseen.
We use three-dimensional magneto-hydrodynamic modeling (MHD) to investigate the structure and conditions of the wind-collision region (WCR) in these three systems, including the important effect of radiative braking in the stellar winds. A transport equation is then solved throughout the computational domain to study the propagation of relativistic electrons and protons. The resulting distributions of particles are subsequently used to compute nonthermal photon emission components.
With the above procedure, we obtained first model results that can account for the weak detection of $\gamma^2$ Velorum, the strong detection of $\eta$ Carinae, and the non-detection of WR 140 in a similar computational setup.
DOI: https://doi.org/10.22323/1.312.0088
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.