Study of the Interstellar Medium and Cosmic Rays in local H I Clouds

Tsunefumi Mizuno on behalf of the Fermi-LAT Collaboration
Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima
739-8526, Japan
E-mail: mizuno@astro.hiroshima-u.ac.jp

Aims. We aim to study the interstellar medium (ISM) and cosmic-rays (CRs) in a mid-latitude region in the third Galactic quadrant (Galactic longitude \(l \) from 200° to 260° and latitude \(|b| \) from 22° to 60°). The region is expected to be dominated by local H I clouds since it is located at high latitude and free of large molecular clouds.

Methods. We evaluated the total gas column density \(N(\text{H}_{\text{tot}}) \) by investigating the correlations among 21 cm survey data (HI4PI), Planck dust thermal emission models (optical depth at 353 GHz \(\tau_{353} \) and radiance \(R \)), and Fermi-LAT \(\gamma \)-ray data in the region studied. In the South region, we first masked areas containing an intermediate velocity cloud or the Orion-Eridanus superbubble, and that with a ratio of the integrated H I 21-cm line intensity to dust emission significantly different from that seen in the rest of the region. We then fit the \(\gamma \)-ray data with a linear combination of gas template maps based on Planck dust models and other components to obtain the total gas column density \(N(\text{H}_{\text{tot,}\gamma}) \).

Results & Prospects. We found that \(N(\text{H}_{\text{tot,}\gamma})/\tau_{353} \) and \(N(\text{H}_{\text{tot,}\gamma})/R \) depend on dust temperature \(T_d \) in the North region, indicating that that neither \(\tau_{353} \) nor \(R \) were proportional to \(N(\text{H}_{\text{tot}}) \). We also found that \(N(\text{H}_{\text{tot,}\gamma}) \) is not proportional to \(\tau_{353} \) but shows non-linear relation in the South region. We will examine the systematic uncertainties and discuss ISM and CR properties inferred from \(\gamma \)-ray data.

7th Fermi Symposium 2017
15-20 October 2017
Garmisch-Partenkirchen, Germany

*Speaker.