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We carefully study the implications of adiabaticity for thebehavior of cosmological perturbations.
There are essentially three similar but different definitions of non-adiabaticity: one is appropriate
for a thermodynamic fluidδPnad , another is for a general matter fieldδPc,nad , and the last one is
valid only on superhorizon scales. The first two definitions coincide if c2

s = c2
w wherecs is the

propagation speed of the perturbation, whilec2
w = Ṗ/ρ̇ . Assuming the adiabaticity in the general

sense,δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac

and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum
conservation. The relation implies that as long ascs 6= cw, the uniform density, comoving and
the proper-time slicings coincide approximately for any gravity theory and for any matter field
if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between
the comoving curvature perturbationRc and the uniform density curvature perturbationζ on
superhorizon scales, and their conservation. This is realized on superhorizon scales in standard
slow-roll inflation.

We then consider an example in whichcw = cs, whereδPnad = δPc,nad = 0 exactly, but the equiv-

alence betweenRc and ζ no longer holds. Namely we consider the so-called ultra slow-roll

inflation. In this case bothRc andζ are not conserved. In particular, as forζ , we find that it

is crucial to take into account the next-to-leading order term in ζ ’s spatial gradient expansion

to show its non-conservation, even on superhorizon scales.This is an example of the fact that

adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation ofRc

or ζ .
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1. Adiabaticity: several definitions

Let us consider several definitions of (non)-adiabaticity. Adiabaticity is apparently a term from
thermodynamics. Therefore originally it is meaningful only when the basic matter variables such as
the energy density and pressure are thermodynamic. As can be seen from the perturbed energy and
momentum conservation equations for a perfect fluid with equation of stateP = P(ρ), adiabatic
perturbations move with the speed of soundcw, given by

c2
w ≡

P′

ρ ′
. (1.1)

For a perfect adiabatic fluid, we therefore haveδP = c2
wδρ. Then it seems natural to define the

non-adiabatic pressure as
δPnad ≡ δP− c2

wδρ, (1.2)

which is gauge invariant and vanishes for a perfect fluid. This is the definition used in [4, 5], and
in much of the literature.

However, the early universe is for sure not in thermal equilibrium, so onecan question the
above definition based on thermodynamics. In fact, when the universe is dominated by a scalar
field, it makes more sense to talk about the propagation speedcs of that scalar field (the phase
speed of sound, see also [6]), defined on comoving slices via

c2
s ≡

(

δP
δρ

)

c
. (1.3)

One is then led to define the non-adiabatic pressure as

δPc,nad ≡ δPc − c2
s δρc. (1.4)

For a fluid, one hascs = cw and both definitions coincide. However, this is in general not true.
For a minimally coupled scalar field one has, for example,

c2
w =−1+

2ε
3

−
η
3
, c2

s = 1, (1.5)

with ε ,η the usual slow-roll parameters. In this sense, the second definition is moregeneral: It
can apply both to a fluid and to a scalar field, hence should be regarded asthe proper definition of
adiabaticity. Therefore we focus on the perturbation which satisfiesδPc,nad = 0 in this paper. As a
consequence, for the first definition we then have (in agreement with [7])

δPnad = (c2
s − c2

w)δρc. (1.6)

The third definition which is commonly used in the inflationary cosmology is about the stage
when the so-called growing mode

2. Formulas for arbitrary matter independent of gravity

The conservation of the energy-momentum tensor in the comoving gauge givesδ (∇µT µ
j)= 0.

δPc =−(ρ +P)Ac . (2.1)

Note that this relation betweenδPc andAc is completely independent of the theory of gravity.
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3. Useful relations among gauge-invariant variables independent of gravity

Combining Eqs. (1.3), (1.6) and (2.1), we now have

δPnad = (c2
s − c2

w)δρc =
c2

w − c2
s

c2
s

(ρ +P)Ac . (3.1)

The first equality is an identity, while the second comes from the conservationof the energy mo-
mentum tensor, and is valid for any gravity theory. This equation may be regarded as a statement
that δPnad has the same behavior asδρc andAc unlessc2

w = c2
s . In other words, the proper-time

slicing (A = 0), comoving slicing (v−B = 0) and uniform density slicing (δρ = 0) coincide with
each other (approximately) ifc2

w 6= c2
s andδPnad = 0 (approximately). Namely,

{δPnad ≈ 0,cs 6= cw}⇒ δρc ≈ Ac ≈ 0. (3.2)

We can use Eq. (3.1) to obtain for example a general relation between the comoving curvature
perturbationRc and uniform density curvature perturbationζ ,

ζ = Rc −
H
ρ̇

δρc = Rc +δPnad
H

ρ̇(c2
w − c2

s )
(3.3)

This is in agreement with the well-known coincidence ofζ andRc on super-horizon scales for
slow roll-models in general relativity, since in this casecs 6= cw andδPnad ≈ 0 on superhorizon
scales. Note also that this relation is degenerate in the case ofcs = cw. As an example of such a
case during inflation, later we explicitly consider the so-called ultra-slow rollinflation model.

4. Discussion and conclusions

The seminal works [4, 5] have taught us that for any relativistic theory of gravity, adiabaticity
implies thatζ andRc coincide and are conserved when gradient terms can be neglected, which
in general happens on superhorizon scales. In this work, we have provided more insight into this
claim.

First, we have specified that the above statement holds when (non)-adiabaticity is defined in
the thermodynamical sense, see Eq. (1.2). We have argued that for a system out of equilibrium, like
the early universe, one should define (non)-adiabaticity in the strict sense, as in Eq. (1.4). In this
work, we have looked at perturbations which are strictly adiabatic in that strict sense (δPc,nad = 0),
and checked the implications for non-adiabaticity in the thermodynamical senseδPnad . A third
definition of non-adiabaticity states that the adiabatic limit has been reached as soon as the time-
dependent solution (the non-freezing one) forζ has become totally negligible.

Second, we have rewritten the relation between (thermodynamical) non-adiabaticity and con-
served quantities in such a way as to clarify when exactly gradient terms canbe neglected, bypass-
ing the need for an explicit computation of these gradient terms. In Eq. (3.1)we have shown that
for any gravity theory,δPnad is proportional to the lapse function in comoving slicing,Ac, provided
thatc2

s 6= c2
w. In the particular case of general relativity,Ac is proportional toṘc so we obtain the

proportionality betweenδPnad and Ṙc, still under the condition thatc2
s 6= c2

w. Furthermore, we
have obtained in Eq. (3.3) that whenδPnad = 0, Rc andζ coincide, again under the condition that
c2

s 6= c2
w. This results holds independently of gravity theory as well.
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Any Gravity theory General Relativity (Ac = Ṙc/H)

Generic matter δPnad= δρc(c2
s − c2

w) =

[

(

cw
cs

)2
−1

]

(ρ +P)Ac δPnad=

[

(

cw
cs

)2
−1

]

(ρ +P) Ṙc
H

M. c. scalar field δPnad= (c2
w −1)Acφ̇2 δPnad= (c2

w −1) Ṙc
H φ̇2

Any Gravity theory General Relativity

Generic matter ζ = Rc −δPnad
H

ρ̇(c2
s−c2

w)
= Rc +

H
ρ̇

ρ+P
c2

s
Ac ζ = Rc +(ρ +P) Ṙc

c2
s H

H
ρ̇

M. c. scalar field ζ = Rc +Acφ̇2 H
ρ̇ ζ = Rc + φ̇2 Ṙc

H
H
ρ̇

Table 1: The upper table shows the relation between the fluid-based non-adiabatic pressure perturbations
δPnad and metric perturbations, and the lower table gives the relation between curvature perturbations on
uniform density slicesζ and on comoving slicesRc. For both tables the first column corresponds to relations
valid in any gravity theory, the second column to the case of general relativity, the first row is for a generic
matter field and the second one is for a minimally coupled scalar field.
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