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We investigate how the Fine-Tuning (FT) in the B-L Supersymmetric Standard Model (BLSSM)
compares to the Minimally Supersymmetric Standard Model (MSSM), where both models have
universality. This is done for two scales: both low (i.e. collider) and high (i.e. Grand Unified
Theory (GUT)) scales. We see this is similar for both models and the two scale regimes. We
also study the possible Dark Matter (DM) candidates each model offers in a realistic scenario
satisfying relic density constraints. Our findings are that whilst the parameter space for the single
MSSM DM candidate is severely constrained, the BLSSM offers multiple candidates in a much
wider region.
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1. Introduction

One of the most promising theories to address a number of questions left unanswered by the
Standard Model (SM) is supersymmetry (SUSY). However, to date, there is no direct experimental
evidence supporting any specific BSM model. One of the motivations of SUSY, though not why
it was invented, is to solve the hierarchy problem. We know the SM may not be extrapolated to
arbitrarily large scales, as we expect quantum gravitational effects at Planck scale (1019GeV); and
the strong hints of unification at GUT scale (1016GeV). So, any states with very large masses will
contribute to the self-energy corrections to the Higgs, which would result in a bare mass coupling
which is fine-tuned to one part in ∼ 1028, if the new states were to be at GUT scale, 1016GeV. As
no super-partners have yet been discovered at the LHC, the scale of SUSY is pushed higher and
would result in a (much smaller) finely-tuned Higgs mass of order 1 part in (Λ2

SUSY/Λ2
EW ) ∼ 100.

This FT leads us to think that our first guess of nature obeying the most minimal SUSY scenario,
the MSSM, may not have been correct.

Now, it is certainly worth considering these non-minimal cases and comparing the FT between
these and the MSSM. There is no strict absolute definition of FT in nature, but rather it is more of
a construct from our point of view. The overall goal of any quantitative measure of FT is to check
how different the Universe would be if the fundamental parameters of the theory are changed by an
infinitesimal amount. The absolute scale of this is unimportant as it is fundamental to nature, but
what is important for our sake is to devise a measure which may be applied to multiple models in
order to compare the relative value of their FT. If a given model has particularly large FT, then this
may suggest it is unlikely to represent nature.

In this work, we consider extending the SM gauge group with a U(1)B−L, in a SUSY frame-
work. This model includes the benefits of the MSSM, and provides a motivation to add exactly three
Right Handed (RH) neutrinos, this in turn allows a natural description of light, non-vanishing, Left
Handed (LH) neutrino masses. Another consequence of this model includes several additional DM
candidates to the MSSM, which we discuss.

In section 2 we briefly introduce the BLSSM and its particle content, we then analyse the
bounds on this model from colliders and DM searches in section 3. In section 4 we discuss the FT
measures we adopt and in section 5, we present all of our findings and then conclude in section 6.

2. The B−L Supersymmetric Standard Model

This model extends the SM gauge group to include a gauge symmetry conserving Baryon mi-
nus Lepton number (B−L). In order to cancel the new triangle anomaly made with three U(1)B−L

gauge bosons, one is forced to add three RH singlets to the SM, which we identify as three RH
neutrinos. We include a type-I see-saw mechanism such that the larger (TeV scale) mass of the
RH neutrinos motivates the small (eV scale) masses of the LH ones. We place this model of an
extended gauge group in a SUSY framework [1, 2, 3], where we may write the superpotential in
terms of that of the MSSM with BLSSM specific terms:

W = µHuHd +Y i j
u QiHuuc

j +Y i j
d QiHddc

j +Y i j
e LiHdec

j
}

MSSM

+ Y i j
ν LiHuNc

i +Y i j
N Nc

i Nc
j η1 +µ

′
η1η2

}
BLSSM-specific
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where the top line is the same as in the MSSM and the bottom shows the BLSSM-specific terms.
In the following table we summarise the particle content of the BLSSM.

Chiral Superfield Spin 0 Spin 1/2 GB−L

RH Sneutrinos / Neutrinos (x3) ν̂ ν̃∗R ν̄R (1, 1, 0, 1
2)

Bileptons/Bileptinos η̂ η η̃ (1, 1, 0, -1)
ˆ̄η η̄ ˜̄η (1, 1, 0, 1)

Vector Superfields Spin 1/2 Spin 1 GB−L

BLino / B’ boson B̃′0 B′0 (1 1, 0, 0)

In addition to the MSSM, we have the three RH neutrino states and their superpartners the
“sneutrinos”. Two B−L complex Higgs singlets, the “bileptons” to break the U(1)B−L (two be-
cause of the anomaly cancellation condition, as with the Higgs doublets in the MSSM), and their
superpartners, the “bileptinos”. Finally we have a new B’ gauge boson associated with this group
and its superpartner the “BL-ino”. Both the sneutrinos and BL-ino/bileptino-like neutralinos make
good DM candidates, which we investigate later.

3. Collider and DM bounds

We compare the MSSM and BLSSM both with complete universality, ie g1 = g2 = g3(= gBL)

at GUT scale. The SARAH and SPheno programs [4, 5] use the high scale parameters as initial
inputs and calculate the low-scale spectra. In this work we have chosen to fix the mass of our
Z′, rather than generating a spectra of low mass unphysical points. We require that this mass
satisfies Electro-Weak Precision Observables (EWPOs) from both LEP2 data and the LHC with√

s = 13 TeV and an integrated luminosity of L = 13.3 fb−1 as presented in [6]. A conservative
estimate of MZ′ = 4 TeV allows a realistic mass given our particular model for all couplings and
widths. We also enforce that our heavy scalars, such as those found in a 2HDM [7], plus our B−L
Higgs are allowed by LHC searches, by using the HiggsBounds/HiggsSignals programs
[8, 9, 10, 11, 12], this removes scalars which are excluded by current bounds and also demands the
lightest CP-even scalar must have SM-like couplings. To check the relic density for each of our
spectrum points, we use the MicrOMEGAs program [13, 14]. We compare this calculated value to
the current measured value of the DM relic density:

Ωh2 = 0.1187±0.0017(stat)±0.0120(syst) (3.1)

as measured in 2015, by the Planck Collaboration [15].

4. Fine-Tuning Measures

There exist many quantitative measures of FT, all of which numerically estimate how resistant
a given model is to some shift in the initial parameters. The most popular of these measures
the change in mass of the SM Z boson mass at EW level when shifting one of the fundamental
parameters of the theory by some infinitesimal amount [16, 17],

∆ = Max
∣∣∣∣∂ lnv2

∂ lnai

∣∣∣∣= Max
∣∣∣∣ ai

v2
∂v2

∂ai

∣∣∣∣= Max
∣∣∣∣ ai

M2
Z

∂M2
Z

∂ai

∣∣∣∣ . (4.1)
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In this work we check the FT at two scales, at both high scale (the common literature scale) and
low-scale. The reason to perform this check at two scales is to check that a model does not have
a low fine-tuning at GUT scale but be very finely tuned at EW. To calculate the FT at GUT scale,
we use the fundamental parameters: the unification masses for scalars (m0) and gauginos (m1/2),
the universal trilinear coupling (A0), the Higgsino mass µ and quadratic soft SUSY term (Bµ), for
the MSSM. These are also applicable to our BLSSM scenario, but with further terms: the bileptino
mass µ ′ and quadratic term Bµ ′. The parameters are thus:

ai =
{

m0, m1/2, A0, µ, Bµ,( µ
′, Bµ

′)
}
. (4.2)

Whilst it is normally viewed that loop corrections do not affect the FT, recent work [18] has shown
that they can change the absolute scale by a factor of two. We now turn to the SUSY-scale FT. For
the BLSSM (noting one obtains the MSSM by taking X → 1, g̃→ 0), one may minimise the Higgs
potential and solve the tadpole equations to find the mass of the SM Z in terms of SUSY-scale
quantities,

Mz2

2
=

1
X

(
m2

Hd
+Σd

(tan2(β )−1)
−

(m2
Hu

+Σu) tan2(β )

(tan2(β )−1)
+

g̃M2
Z′Y

4gBL
−µ

2

)
, (4.3)

where

X = 1+
g̃2

(g2
1 +g2

2)
+

g̃3Y
2gBL(g2

1 +g2
2)
, (4.4)

Y =
cos(2β ′)

cos(2β )
=

(
tan2 β +1

)(
1− tan2 β ′

)
(1− tan2 β )(tan2 β ′,+1)

, (4.5)

and

Σu,d =
∂∆V
∂v2

u,d
(4.6)

are the loop corrections. If one treats these as independent contributions, as done in [19], then since
the FT measure is only the maximum contribution, then these small terms do not affect the FT. Note
that this is a different treatment than in the GUT-FT case, but it is the comparison of two models
within a given scheme which is of importance to us. The parameters analogous to the high-scale
are

∆SUSY ≡Max(Ci)/(M2
Z/2) , (4.7)

where our FT parameters are Ci, which represent each of the terms in 4.3. One may guess a large
MZ′ dominates and so the BLSSM would have a larger FT than the MSSM, but the low value of the
gauge-kinetic mixing g̃ suppresses this. What dominates, in all four scenarios of low/high scale for
MSSM/BLSSM, is the µ term. Other parameters offer negligible contributions.

5. Results

We scan over the parameter space of the MSSM/BLSSM where each model has 60,000 data
points which satisfy the HiggsBounds/HiggsSignals requirements. For each point we cal-
culate a full spectrum, including the LSP DM candidate relic density and a value for low- and
high-scale FT. Our scan ranges for both models are over the regions: [0,5] TeV for m0 and m1/2,
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[0,60] for tanβ , [-15,15] TeV for A0 and, for the BLSSM alone, [0,2] for tanβ ′ and [0,1] for the
neutrino Yukawa couplings Y (1,1), Y (2,2), Y (3,3), with MZ′ = 4TeV.

Figure 1 shows the FT for all four cases - both high and low-scale FT for the BLSSM and
MSSM. We plot the FT in the m0-m1/2 plane, rather than any of the other initial parameters (tanβ ,
A0, and for the BLSSM, tanβ ′), recalling that others, eg µ , are determined by these. The FT is
coloured for each point: red for FT > 5000, green for 1000 < FT < 5000, orange for 500 < FT
< 1000 and blue (the least finely-tuned points) for FT < 500. We immediately see that the FT
is similar between the BLSSM and MSSM. Both are approximately independent of m0 and have
a strong dependence on m1/2, as this determines µ . The lack of points at m0 < 1000GeV for the
BLSSM is due to the MZ′ = 4TeV requirement. A more detailed analysis of these results may be
found in [3].

(a) BLSSM GUT-FT. (b) BLSSM SUSY-FT.

(c) MSSM GUT-FT. (d) MSSM SUSY-FT.

Figure 1: Fine-tuning in the plane of unification of scalar, gaugino masses for BLSSM and MSSM for both
GUT-parameters (∆) and SUSY parameters (∆SUSY). The FT is indicated by the colour of the dots: blue for
FT < 500; Orange for 500 < FT < 1000; Green for 1000 < FT < 5000; and Red for FT > 5000.
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Now we consider the DM sectors of both models. In the universal MSSM, only one good
candidate, a Bino-like neutralino, survives. For the BLSSM, this candidate exists, but we have
additional neutralinos from the SUSY partners to the B’ boson and new Higgses: the BL-ino and
Bileptino-like neutralinos. Finally, we have the SUSY partner to the TeV scale RH neutrinos, the
sneutrinos. We plot the relic density vs mass for these candidates in figure 2. Immediately one sees
for the MSSM, that only ∼5 of the 60,000 spectrum points survive the relic constraint. For the
BLSSM, one finds a more promising bino-like neutralino sector (many more of these blue points
satisfy the relic constraints), but, each of the other types of neutralinos have points which satisfy
the relic requirements too. The most promising candidate, in terms of allowed parameter space, is
the sneutrino, whose points are in red. The relic density requirements clearly pass directly through
the middle of these points, allowing many viable DM candidates.

Figure 2: (a) Relic density vs LSP mass for the BLSSM. (b) Relic density vs LSP mass for the MSSM. In
both plots the horizontal lines identify the 2σ region around the current central value of Ωh2.

6. Conclusions

We have examined the FT and DM properties of the universal scenarios of the MSSM and
BLSSM. We see that whilst the FT is similar at both low and high scales for the two models,
when including a DM candidate which satisfies the relic density limits, the MSSM is very highly
constrained, whereas the BLSSM allows large regions of parameter space.
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