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The extension of the standard model (SM) by a Higgs portal scalar field is one the simplest dark
matter theories. We present here the first results for a global fit to this model using the global and
beyond the SM inference tool (GAMBIT). This software enables the combination of dark matter
constraints in a statistically consistent manner. In total 15 parameters are varied and the parameter
space explored using four different scanning algorithms. The viable parameter space is reduced
from previous studies of this model due to the inclusion of the latest direct detection constraints.

The European Physical Society Conference on High Energy Physics
5-12 July, 2017
Venice

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:j.mckay14@imperial.ac.uk


P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
0
7
6

Global fits of the scalar singlet model using GAMBIT James McKay

1. Introduction

There are a multitude of both experimental and theoretical constraints on the nature of physics
beyond the standard model (SM). For any beyond SM theory, the allowed values of its parameters
are determined by such constraints. Combing as many of these as possible in a statistically consis-
tent manner is the process of a global fit. The GAMBIT software [1, 2, 3, 4, 5, 6] was developed to
perform global fits in the most flexible and modular way, enabling new models and constraints to
be included as efficiently as possible.

The results from the first global fit using GAMBIT applied to the scalar singlet dark matter
model are summarised here, with the complete study presented elsewhere [7]. GAMBIT has also
been used for global fits of the minimal supersymmetric standard model (MSSM). In particular
in the constrained MSSM (CMSSM) [8], two variants of the non-universal Higgs mass (NUHM)
model [8] and the MSSM with parameters defined at the weak scale [9].

GAMBIT enables the user to incorporate existing software via a backend system. The fol-
lowing external codes were used to produce the results presented here: Diver [2], MultiNest 3.10
[10] and GreAT [11] (efficient sampling); FlexibleSUSY 1.5.1 [12] (vacuum stability calculation);
DDCalc 1.0.0 [4] (direct detection), nulike 1.0.4 [13, 23] (neutrino indirect detection), gamLike
1.0.0 [4] (gamma-ray indirect detection) and DarkSUSY 5.1.3 [15] (Boltzmann solver). Input
files, samples and best-fit benchmarks for this study are publicly accessible from Zenodo [16].

2. Model, constraints and scan details

Scalar singlet dark matter is one of the simplest extensions of the SM. One real singlet scalar S
with mass mS, which is stabilised by a Z2 symmetry, is coupled to the SM via the Higgs field with
a portal coupling λhS. In addition to S being a dark matter candidate, due to the coupling with the
Higgs field it also stabilises the electroweak Higgs vacuum for values of λhS large enough to affect
the running of the Higgs coupling. In general a quartic S coupling is also possible, but has very
little phenomenological relevance for the constraints we consider here, so we set it to zero. Thus
we have two beyond SM parameters, λhS and mS.

In addition to these we vary 13 ‘nuisance’ parameters. These are: the local dark matter (DM)
density, the nuclear matrix elements (strange, and up + down), the strong, electromagnetic and
Fermi couplings, the Higgs mass, and the six quark masses. In our scans we allow for these
parameters to vary from their central values by at least ±3σ – see Table 2 in Ref. [7] for the central
values and allowed ranges.

The combined likelihood is composed of 19 seperate likelihood functions. Experimental
DM constraints include direct detection from LUX Run I (2015) and II (2016) [18, 19], PandaX
(2016) [20], SuperCDMS (2014) [21] and XENON100 (2012) [22]. We also constrain the dark
matter annihilation cross-section using the IceCube 79 string analysis [14, 23] of solar neutrinos
and the lack of anomalous gamma ray emission from dwarf spheroidal galaxies from the Fermi-
LAT experiment [24]. The decay width of the Higgs to invisible (DM) particles is constrained by
the non-observation of this process at the Large Hadron Collider.

The thermal relic abundance of scalar particles, ΩS, is constrained by the Planck [17] measured
value (ΩDMh2 = 0.1188±0.0010), which we apply as an upper limit likelihood as described in Sec
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8.3.4 of Ref. [1]. For consistency, if the model under-populates the DM relic density, we rescale all
direct and indirect signals to account for the fraction of DM that is detectable. This is a conservative
approach as it suppresses direct and indirect signals in regions where the thermal abundance is
less than the Planck value. Finally, via our choice of prior, we place a theoretical constraint of
λhS ≤ 10 from the consideration of perturbative unitarity. The remaining 10 constraints are simple
likelihoods for the nuisance parameters.

We carry out two main types of scan: one over the full range of scalar masses from 45 GeV
to 10 TeV, intended to sample the entire accessible parameter space, and another centred on lower
masses at and below the Higgs resonance mS ∼ mh/2, in order to obtain a more detailed picture of
this region. Four scanning algorithms interfaced via ScannerBit [2] are used for efficient sampling
of the 15 dimensional parameter space. These are a differential evolution sampler Diver [2], an
ensemble Markov Chain Monte Carlo (MCMC) known as T-Walk [2], the MultiNest nested sam-
pling algorithm [10] and an MCMC implementation via the GreAT [11] package. This choice of
scanners allows efficient sampling of the multimodal parameter space, providing state of the art
optimisation, sampling of the profile likelihood and accurate calculation of the Bayesian posterior.

We performed a total of nine scans, consisting of a low and high mass scan for each of the four
scanners, plus one additional scan with Diver focused specifically on the mS ∼ mh/2 region. These
combined to give a total of 5.7×107 valid samples. In addition we carried out over 200 more scans
as part of scanner performance testing, using the same combined likelihood, with varying numbers
of free parameters and scanner settings (such as convergence tolerance) in Ref. [2]. Based on these
results we choose the most stringent scanner settings for the nine scans in this global fit.

3. Results

The 2D profile likelihood resulting from our global fit analysis is presented in Fig. 1 with
respect to λhS and mS. We find that the low mass resonance region, a well-known feature from
previous studies, is still allowed. However, it is heavily constrained by direct detection from lower
masses, indirect detection from higher masses, Higgs invisible width from above and the relic
density from below. There also exists a narrow “neck" region directly on the resonance, which
is constrained by the Higgs invisible width from lower masses and direct detection from higher
masses. The largest allowed regions are two high-mass, high-coupling solutions. These two regions
are separated from below by the most recent LUX and PandaX direct detection exclusion limits.
The region excluded by this constraint, effectively dividing the two high mass modes, is due to
the rescaling of the direct detection signals by the predicted relic density, which approximately
cancels the leading λ 2

hS-dependence of the nuclear scattering cross-section. Therefore, since the
relic density has a logarithmic dependence on λhS, for large values of this coupling the exclusion
limits can reach masses of a few hundred GeV.

By using the relic density as an upper limit, all points for which ΩSh2 ≤ ΩDMh2 are assigned
a null log-likelihood contribution and treated the same as those with ΩSh2 = ΩDMh2. However,
by consistently rescaling the local DM density as well as that in dwarf spheroidal galaxies, the
direct and indirect detection likelihoods are not flat within this allowed region. Thus, in contrast to
pure exclusion studies, we gain additional information with some points favoured more than others.
This rescaling is clear when we present the same 2D profile likelihood with respect to cross-sections
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Figure 1: Profile likelihoods for the scalar singlet model, in the plane of the parameters λhS and mS. The
white contours indicate the 1σ and 2σ confidence regions. The left panel is focused on the low mass reso-
nance region, while the right shows the full parameter range. The white star indicates the best-fit (maximum
likelihood) point. The orange lines indicate edges of the allowed region where S constitutes 100% of dark
matter.
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Figure 2: Profile likelihoods of nuclear scattering (left) and annihilation (right) cross-sections for the scalar
singlet model, scaled for the singlet relic abundance and plotted as a function of the singlet mass. Here we
rescale the nuclear and annihilation scattering cross-sections by f ≡ ΩS/ΩDM and f 2, in line with the linear
and quadratic dependence, respectively, of scattering and annihilation rates on the dark matter density. Con-
tour lines indicate the 1σ and 2σ confidence regions. The best-fit (maximum likelihood) point is indicated
with a white star.

rescaled by the appropriate power of ΩS/ΩDM in Fig. 2, together with the experimental constraints
from Fermi-LAT, LUX and PandaX.

The best-fit point is located within the low-mass resonance region, at λhS = 6.5×10−4, mS =

62.51 GeV. This point has a combined log-likelihood of log(L ) = 4.566. This can be com-
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pared with the corresponding likelihood if each component is assigned the hypothetical ‘ideal’
fit, which reproduces positive measurements exactly, and is equal to the background-only value for
observables with only a limit. This ideal combined likelihood is log(L ) = 4.673, a difference of
∆ lnL = 0.107 with respect to our best-fit. The best fit in the high mass, high coupling modes
is at λhS = 9.9, mS = 132.5 GeV, with log(L ) = 4.540, ∆ lnL = 0.133. We also obtain best-fit
points with the constraint that ΩS be within 1σ of the Planck value. With this constraint we find
the best-fit is again in the low mass region at λhS = 2.9× 10−4, mS = 62.27 GeV. This point has
log(L ) = 4.431, so ∆ lnL = 0.242 compared to the ideal model. By making a rough estimate for
the p-value of these points we obtain values within the range 0.4 to 0.9 – which suggests that the
fits are perfectly reasonable. This also indicates that there is no significant preference from data
for S to make up either all or only a fraction of the observed DM. See Ref. [7] for a discussion
regarding the interpretation of ∆ lnL and the estimation of p-values.

From the scans using the T-Walk MCMC algorithm we are also able to obtain high quality
marginalised posterior distributions. The distributions are presented in Figures 4 and 5 of Ref. [7].
We find that although the resonance region is detected, and appropriate priors are used, it is heavily
penalised by its small posterior volume (less than 0.4% of the total posterior mass), arising from
the volume effect of integrating over nuisance parameters. The penalty is sufficiently severe that
this mode drops outside the 2σ credible region in the mS-λhS plane, which is an indication of its
heavy fine-tuning, a property naturally penalised in a Bayesian analysis.

Finally, we check vacuum stability for some interesting benchmark points. For details of the
method see Sec 4.4 of Ref. [7]. For our best-fit point, the Higgs-portal coupling λhS is too small
to make a noticeable positive contribution to the running of the Higgs self-coupling, which reaches
a minimum value of −0.0375935 at 2.523× 1017 GeV. The electroweak vacuum remains meta-
stable for this point, with no substantial change in phenomenology compared to the SM. Next we
consider a high-mass point within our 1σ allowed region: λhS = 0.5, mS = 1.3 TeV. This point
has a large enough coupling λhS that the minimum quartic Higgs coupling is positive: 0.0522133
at 1.40006× 109 GeV. Therefore we see that it is certainly possible to stabilise the electroweak
vacuum within the singlet model whilst respecting all current constraints.

4. Conclusion

Scalar singlet dark matter, stabilised by a Z2 symmetry, is a still a phenomenologically viable
model. In Ref. [7], and in the summary here, we have presented the most up to date and stringent
global fit analysis, including 13 nuisance parameters. We find that the remaining allowed regions
are continually being constrained by experimental dark matter searches. These results also serve as
a validation of the new GAMBIT software, showing that it is possible to efficiently produce high
quality Bayesian and frequentist results while consistently combining many different constraints.
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