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Rapidity profiles from 3+1D Glasma simulations
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We present our progress on simulating the Glasma in the early stages of heavy ion collisions
in a non-boost-invariant setting. Our approach allows us to describe colliding nuclei with finite
longitudinal width by extending the McLerran-Venugopalan model to include a parameter for
the Lorentz-contracted but finite extent of the nucleus in the beam direction. We determine the
rapidity profile of the Glasma energy density, which shows strong deviations from the boost in-
variant result. Both broad and narrow profiles can be produced by varying the initial conditions.
We find reasonable agreement when we compare the results to rapidity profiles of measured pion
multiplicities from RHIC.
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Figure 1: A 3D plot of the energy density directly after the collision, showing both nuclei “A” and “B” and
the Glasma with visible flux tube structure [1]. The box only covers a small part of the full collision in the
transverse plane spanned by x and y, for which we use periodic boundary conditions as opposed to fixed
boundary conditions in the longitudinal direction.

1. Introduction

In the earliest stages of heavy ion collisions the color glass condensate (CGC) effective field
theory [2, 3] provides a first principles, weak coupling, yet non-perturbative description in terms
of classical Yang-Mills fields and color currents. The main idea is a separation of degrees of
freedom in a fast nucleus into partons with large longitudinal momentum fraction x (e.g. valence
quarks) and partons with small x (mostly soft gluons). Large x partons are assumed to be randomly
distributed, recoilless classical color charges, moving at the speed of light, while small x partons
are described as classical gluon fields sourced by the large x partons. In the ultrarelativistic limit
the classical field of the soft gluons becomes a shock wave. The result of a collision of two such
shock waves is a field initially composed of purely longitudinal color flux tubes known as the
Glasma [4], a precursor to the quark gluon plasma. Due to the assumption of infinitely thin shock
waves the Glasma is boost invariant, i.e. there is no dependence on space-time rapidity ηs. After
the collision the Glasma evolves and expands classically according to the Yang-Mills equations,
preserving the initial boost invariance. This classical evolution only holds for a short amount of
time, up to roughly τ . 1fm/c, after which the field quickly becomes decoherent and the classical
approach is considered to be invalid.

The evolution of the boost invariant Glasma and its properties have been investigated thor-
oughly both numerically [5, 6, 7, 8] and analytically in the weak field limit [9] or using the small τ

expansion [10]. The Glasma can also be studied in settings without boost invariance, for instance
by introducing small, rapidity dependent fluctuations in the initial conditions [11, 12], by consid-
ering the saturation scale as a function of rapidity [13] or more fundamentally at next-to-leading
order in the gauge coupling, by making use of the JIMWLK evolution [14, 15, 16]. However, in all
of these approaches one still uses the Glasma initial conditions [17], which are derived under the
assumption of boost invariance and are thus not strictly valid at finite collision energy.

Obviously, realistic nuclei at finite collision energies are not infinitely thin. The finite “clas-
sical” longitudinal extent of a nucleus at a given velocity v is proportional to R/γ , where R is the
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radius of the nucleus and γ−1 =
√

1− (v/c)2 is the Lorentz factor. In the context of the JIMWLK
evolution, the longitudinal extent of nuclei might even be larger than the classical extent: as the
evolution to lower longitudinal momenta (smaller x) progresses, more and more small x gluons are
added to the gluon field of the nucleus. Due to uncertainty in the longitudinal position at small x,
these gluons are spread out over a length typically larger than R/γ , which leads to a picture of rather
thick nuclei even at ultrarelativistic energies [18]. Except for a few pioneering studies [19, 20], the
effects of finite longitudinal extent and its consequences on the evolution of the Glasma have been
largely ignored in the past.

The aim of this work is to extend the CGC/Glasma description to include the finite longitudinal
extent of the colliding nuclei, striving for a more realistic picture at finite collision energies. In this
proceedings contribution we present our progress in simulating heavy-ion collisions in the CGC
framework at finite collision energies based on our previous publications [21, 1].

2. Initial conditions

In the standard picture of a boost invariant collision the color current of a left moving nucleus
(here denoted as “A”) can be written as

J−(A)(x
+,xT ) = δ (x+)ρ(A)(xT ) , (2.1)

where x± ≡ (x0±x3)/
√

2 and ρ(A)(xT ) is the color charge density in the transverse plane. Supplied
with the covariant gauge condition ∂µAµ(x) = 0, the current generates a field given by

A−(A)(x
+,xT ) =−∆

−1
T J−(A)(x

+,xT ) , (2.2)

with the Laplace operator in the transverse plane ∆T . Likewise, a right moving nucleus (“B”)
is described by the color current J+(B)(x

−,xT ) and the field A+
(B)(x

−,xT ). As mentioned in the in-
troduction, collisions of two such fields leads to the boost invariant Glasma picture. In order to
describe the non-boost-invariant scenario where nuclei have finite longitudinal extent we have to
relax the assumption made in Eq. (2.1) and account for extended support of the color charges along
the longitudinal direction. The solution to the field equations before the collision in Eq. (2.2) re-
main unchanged. In particular we look at initial conditions where the longitudinal shape can be
separated from the transverse color charge density

J−(A)(x
+,xT ) = f (x+)ρ(A)(xT ) , (2.3)

where f (x+) is a normalized function that defines the longitudinal profile. The form of the current
is a special case where non-trivial color structure in the longitudinal extent is neglected [22]. With
extended currents and fields it is no longer possible to just focus on the forward light cone. Instead,
we solve the full Yang-Mills equations

DµFµν(x) = Jν

(A)(x)+ Jν

(B)(x) (2.4)

in the laboratory frame in 3+1 dimensions. Working the lab frame forces us to explicitly include the
color currents in our simulation and we have to make sure that the non-Abelian charge conservation
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Figure 2: Left: Comparison of the space-time rapidity profile of the LRF energy density εloc(τ0,ηs) (thick
solid lines), π+ multiplicity dN/dy at RHIC [24] (data points) and Gaussian fits (dashed and dotted). The
infrared regulator m has a large effect on the width: (a) m = 0.2GeV, (b) m = 0.4GeV and (c) m = 0.8GeV.
Right: Longitudinal velocity vz(t,z) as a function of the longitudinal coordinate z evaluated at different labo-
ratory frame times t from out simulation (black, solid lines) compared to the free-streaming case vz(t,z)= z/t
(red, dashed lines). We show three different times: t1 = 0.5fm/c, t2 = 1.5fm/c and t3 = 2.5fm/c.

DµJµ

(A,B)(x) = 0 holds. Details of how we do this numerically are described in [21]. As a model for
large nuclei we use the McLerran-Venugopalan model [23] defined by the charge density correlator〈

ρ
a
(A,B)(xT )ρ

b
(A,B)(yT )

〉
= g2

µ
2
δ
(2)(xT − yT )δ

ab , (2.5)

where g is the gauge coupling constant and µ controls the average charge fluctuations in the trans-
verse plane. In our approach (Eq. (2.3)) the two-dimensional charge density given by Eq. (2.5) is
simply extended in the longitudinal direction. We relate the width of f (x+) (which we take to be
a Gaussian) to the Lorentz contracted diameter of the nucleus 2R/γ , which in turn is related to
the collision energy

√
sNN . In our most recent publication [1] we look at RHIC-like scenarios of

central Au+Au collisions with
√

sNN at 200GeV and 130GeV.

3. Results

Solving the field equations for the collision scenario in 3+1 we obtain pictures like Fig. 1,
where we plot the energy density of the Yang-Mills fields directly after the collision. We study
the Glasma in our simulations by looking at the local rest frame (LRF) energy density εloc(τ,ηs)

which we compute by diagonalizing the energy-momentum tensor T µ

ν (x). In Fig. 2 (left) we show
εloc(τ0,ηs) as a function of space-time rapidity at τ0 = 1fm/c for

√
sNN = 200GeV. We observe

that these rapidity profiles are approximately Gaussian in shape. The width of the profiles depends
on the energy

√
sNN and also strongly on the infrared regulator that is used in the initial conditions.

As one should expect, we observe that reducing
√

sNN , thus increasing the longitudinal extent, the
profiles become more narrow. The effect of the infrared regulator is more surprising, not well un-
derstood and warrants further in-depth studies. The width itself is rather independent of evaluation
time τ0 as long as τ0 & 0.3fm/c after which one enters the free-streaming limit.
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Free-streaming can be observed by looking at the longitudinal velocity vz, which corresponds
to the velocity associated with the Lorentz boost that transforms from the laboratory frame into the
LRF. In Fig. 2 (right) we plot vz(t,z) as a function of the longitudinal coordinate z at different times
t and compare it to the free-streaming case, where vz = z/t. We observe that the two curves match,
which implies that the LRF mostly corresponds to the (τ,ηs) frame. The free-streaming limit is
also visible in the strong pressure anisotropy at later times where transverse pressure pT dominates
longitudinal pressure pL.

The conclusion we can draw from these observations is that by including finite longitudinal ex-
tent, thus explicitly breaking the boost invariance of the system, we obtain non-flat rapidity profiles
that develop early on in the evolution, but the Glasma still flows in a free-streaming manner just like
in the boost invariant approximation. Finite longitudinal extent therefore does not fundamentally
change the picture of the boost invariant Glasma, except for non-flat rapidity profiles.

Acknowledgments

The authors thank A. Kurkela and T. Lappi for helpful discussions. This work has been
supported by the Austrian Science Fund FWF, Project No. P26582-N27 and Doctoral program
No. W1252-N27. The computational results have been achieved using the Vienna Scientific Clus-
ter.

References

[1] A. Ipp and D. Müller, Broken boost invariance in the Glasma via finite nuclei thickness, Phys. Lett.
B771 (2017) 74–79, [1703.00017].

[2] F. Gelis, Color Glass Condensate and Glasma, Int. J. Mod. Phys. A28 (2013) 1330001,
[1211.3327].

[3] F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev.
Nucl. Part. Sci. 60 (2010) 463–489, [1002.0333].

[4] T. Lappi and L. McLerran, Some features of the glasma, Nucl. Phys. A772 (2006) 200–212,
[hep-ph/0602189].

[5] A. Krasnitz and R. Venugopalan, Nonperturbative computation of gluon minijet production in nuclear
collisions at very high-energies, Nucl. Phys. B557 (1999) 237, [hep-ph/9809433].

[6] T. Lappi, Production of gluons in the classical field model for heavy ion collisions, Phys.Rev. C67
(2003) 054903, [hep-ph/0303076].

[7] T. Lappi, Energy density of the glasma, Phys. Lett. B643 (2006) 11–16, [hep-ph/0606207].

[8] A. Dumitru, Y. Nara and E. Petreska, Magnetic flux loop in high-energy heavy-ion collisions, Phys.
Rev. D88 (2013) 054016, [1302.2064].

[9] H. Fujii and K. Itakura, Expanding color flux tubes and instabilities, Nucl. Phys. A809 (2008)
88–109, [0803.0410].

[10] G. Chen, R. J. Fries, J. I. Kapusta and Y. Li, Early Time Dynamics of Gluon Fields in High Energy
Nuclear Collisions, Phys. Rev. C92 (2015) 064912, [1507.03524].

4

https://doi.org/10.1016/j.physletb.2017.05.032
https://doi.org/10.1016/j.physletb.2017.05.032
https://arxiv.org/abs/1703.00017
https://doi.org/10.1142/S0217751X13300019
https://arxiv.org/abs/1211.3327
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1146/annurev.nucl.010909.083629
https://arxiv.org/abs/1002.0333
https://doi.org/10.1016/j.nuclphysa.2006.04.001
https://arxiv.org/abs/hep-ph/0602189
https://doi.org/10.1016/S0550-3213(99)00366-1
https://arxiv.org/abs/hep-ph/9809433
https://doi.org/10.1103/PhysRevC.67.054903
https://doi.org/10.1103/PhysRevC.67.054903
https://arxiv.org/abs/hep-ph/0303076
https://doi.org/10.1016/j.physletb.2006.10.017
https://arxiv.org/abs/hep-ph/0606207
https://doi.org/10.1103/PhysRevD.88.054016
https://doi.org/10.1103/PhysRevD.88.054016
https://arxiv.org/abs/1302.2064
https://doi.org/10.1016/j.nuclphysa.2008.05.016
https://doi.org/10.1016/j.nuclphysa.2008.05.016
https://arxiv.org/abs/0803.0410
https://doi.org/10.1103/PhysRevC.92.064912
https://arxiv.org/abs/1507.03524


P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
1
7
6

Rapidity profiles from 3+1D Glasma simulations with finite longitudinal thickness David Müller

[11] P. Romatschke and R. Venugopalan, The Unstable Glasma, Phys. Rev. D74 (2006) 045011,
[hep-ph/0605045].

[12] K. Fukushima and F. Gelis, The evolving Glasma, Nucl. Phys. A874 (2012) 108–129, [1106.1396].

[13] T. Lappi, Rapidity distribution of gluons in the classical field model for heavy ion collisions, Phys.
Rev. C70 (2004) 054905, [hep-ph/0409328].

[14] E. Iancu, A. Leonidov and L. D. McLerran, Nonlinear gluon evolution in the color glass condensate.
1., Nucl. Phys. A692 (2001) 583–645, [hep-ph/0011241].

[15] H. Weigert, Evolution at small xbj: The Color Glass Condensate, Prog. Part. Nucl. Phys. 55 (2005)
461–565, [hep-ph/0501087].

[16] B. Schenke and S. Schlichting, 3D glasma initial state for relativistic heavy ion collisions, Phys. Rev.
C94 (2016) 044907, [1605.07158].

[17] A. Kovner, L. D. McLerran and H. Weigert, Gluon Production from Non-Abelian Weizsäcker-Williams
Fields in Nucleus-Nucleus Collisions, Phys.Rev. D52 (1995) 6231–6237, [hep-ph/9502289].

[18] E. Iancu and D. N. Triantafyllopoulos, JIMWLK evolution in the Gaussian approximation, JHEP 04
(2012) 025, [1112.1104].

[19] W. Poschl and B. Muller, Real time dynamics of colliding gauge fields and the ’glue burst’, Phys. Rev.
D60 (1999) 114505, [nucl-th/9812066].
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