

• Measurements of the CKM angle γ at LHCb

Donal Hill*

University of Oxford, United Kingdom *E-mail*: donal.hill@cern.ch

The CKM angle γ is the least well-known angle of the Unitarity Triangle, and the only one easily accessible at tree level. Important constraints on γ are obtained from the analysis of $B^{\pm} \rightarrow D^0 K^{\pm}$ decays, where the D^0 meson is reconstructed in the K^+K^- or $\pi^+\pi^-$ final states; the latest worldbest results using the Run 1 (2011 and 2012) and Run 2 (2015 and 2016) LHCb datasets are presented here. The measurement of $B^{\pm} \rightarrow D^{*0}K^{\pm}$ decays using a partial reconstruction method is also performed at LHCb for the first time, where both $D^{*0} \rightarrow D^0\pi^0$ and $D^{*0} \rightarrow D^0\gamma$ decays are considered. Both sets of results contribute to the ultimate goal of degree level precision on γ , via the exploitation of all possible channels and techniques.

EPS-HEP 2017, European Physical Society conference on High Energy Physics 5-12 July 2017 Venice, Italy

*Speaker. [†]On behalf of the LHCb collaboration.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

2 1. Introduction

Over-constraining the unitarity triangle derived from the CKM matrix is central to the vali-3 dation of the Standard Model (SM) description of CP violation [1]. Its least well known angle is 4 $\gamma \equiv \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$, which has been measured with a precision of about 7° from a com-5 bination of direct measurements [2]. This can be compared with the 3° and $< 1^{\circ}$ precision on 6 the other angles α and β [3, 4]. Among the three angles, γ is unique in that it does not depend 7 on any coupling to the top quark, and thus can be studied at tree level with negligible theoreti-8 cal uncertainty [5, 6]. Disagreement between direct measurements of γ (Fig. 1, top plot) and the q value inferred from global CKM fits (Fig. 1, bottom plot), assuming the validity of the SM, would 10 indicate new physics beyond the SM. 11

Figure 1: CKMfitter averages in the $(\bar{\rho}, \bar{\eta})$ plane. In the top plot, the current limits using only direct measurements of γ and exclusive measurements of V_{ub} in semileptonic decays are shown. In the bottom plot, the indirect limits are shown. (http://ckmfitter.in2p3.fr)

12 2. The ADS and GLW methods

The most powerful method for determining γ in tree-level decays is through the measurement of relative partial widths in $B^- \to DK^-$ decays, where *D* represents a D^0 or \overline{D}^0 meson.¹ The amplitude for the $B^- \to D^0K^-$ contribution is proportional to V_{cb} while the amplitude for $B^- \to$ \overline{D}^0K^- is proportional to V_{ub} . By reconstructing hadronic *D* decays accessible to both D^0 and \overline{D}^0 mesons, phase information can be extracted from the interference between the two amplitudes. The size of the resulting direct *CP* violation is governed by the magnitude of r_B^{DK} , the ratio of the $b \to u\bar{c}s$ amplitude to the $b \to c\bar{u}s$ amplitude. The relatively large value of r_B^{DK} (about 0.1) in $B^- \to DK^-$

¹The inclusion of charge-conjugate processes is implied except in any discussion of asymmetries.

decays [3] allows the determination of the relative phase of the two interfering amplitudes. This relative phase has a *CP*-violating contribution from the weak interaction, γ , and a *CP*-conserving contribution from the strong interaction, δ_B^{DK} ; a measurement of the decay rates for both B^+ and B^- gives sensitivity to γ . Similar interference effects occur in $B^- \rightarrow D\pi^-$ decays, albeit with reduced sensitivity to the phases because, due to additional Cabibbo suppression factors, the ratio of amplitudes is about 20 times smaller.

 $B^- \to D^* K^-$ decays, in which the vector D^* meson decays to either $D\pi^0$ and $D\gamma$, also exhibit 26 direct CP violation effects when hadronic D decays accessible to both D^0 and \overline{D}^0 mesons are re-27 constructed. In this case, the exact strong phase difference of π between $D^* \to D\pi^0$ and $D^* \to D\gamma$ 28 decays can be exploited to measure CP observables for states with opposite CP eigenvalues [7]. 29 The amount of direct *CP* violation observed in $B^- \rightarrow D^*K^-$ decays is determined by the magnitude 30 of the ratio $r_B^{D^*K}$, and a measurement of the phase for both B^+ and B^- allows γ and $\delta_B^{D^*K}$ to be 31 disentangled. 32 The study of $B^- \rightarrow D^{(*)0}K^-$ decays for measurements of γ was first suggested for *CP* eigen-33

states of the *D* decay, for example the *CP*-even $D \to K^+K^-$ and $D \to \pi^+\pi^-$ decays, labelled here 34 GLW modes [8, 9]. The argument has also been extended to suppressed $D \rightarrow \pi^- K^+$ decays where 35 the interplay between the favoured and suppressed decay paths in both the B^- and the neutral 36 D decays results in a large charge asymmetry. This so-called ADS mode [10] introduces a de-37 pendence on the ratio of the suppressed and favoured D decay amplitudes, r_D , and their phase 38 difference, δ_D . The $B^- \to [h^+h^-]_D h^-$ ADS/GLW decays $(h = K, \pi)$ have been studied at the B 39 factories [11, 12] and at LHCb [13] using Run 1 data. The $B^- \to (D^{*0} \to [h^+h^-]_D \pi^0)h^-$ and 40 $B^- \to (D^{*0} \to [h^+ h^-]_D \gamma)h^-$ decays have also been studied by the *B* factories [14, 15]. 41

⁴² **3.** Updated $B^- \rightarrow Dh^-$ GLW measurements at LHCb

During 2015 and 2016 (Run 2), an additional 2 fb^{-1} of pp collision data was collected by LHCb at a centre-of-mass energy of $\sqrt{s} = 13 \text{ TeV}$. This resulted in an increase in the sample size of approximately a factor two with respect to the 3 fb^{-1} Run 1 analysis [13]. The $B^- \rightarrow Dh^-$ decays, with $D \rightarrow KK$ and $\pi\pi$, have been measured using the combined Run 1 and Run 2 dataset, providing an update of the previous measurements. The results are

$A_K^{K\pi} =$	-0.019	± 0.005 (stat.)	± 0.002 (syst.)
$A_{\pi}^{KK} =$	-0.008	±0.003 (stat.)	±0.002 (syst.)
$A_K^{KK} =$	+0.126	±0.014 (stat.)	±0.001 (syst.)
$A_{\pi}^{\pi\pi} =$	-0.008	±0.006 (stat.)	±0.002 (syst.)
$A_K^{\pi\pi} =$	+0.115	±0.025 (stat.)	±0.008 (syst.)
$R^{KK} =$	0.988	±0.015 (stat.)	±0.013 (syst.)
$R^{\pi\pi} =$	0.992	± 0.027 (stat.)	± 0.032 (syst.)

43 where the first uncertainty quoted is statistical and the second is systematic. The results improve

⁴⁴ upon the precision in Ref. [13], and are world-best measurements of *CP* observables in these decays.

45 Of particular importance is the reduced tension between the CP asymmetries measured in $B^- \rightarrow$

⁴⁶ $[K^+K^-]_D K^-$ and $B^- \to [\pi^+\pi^-]_D K^-$ decays, which are denoted A_K^{KK} and $A_K^{\pi\pi}$, respectively. The ⁴⁷ tension in the Run 1 measurement has reduced due to a larger value of A_K^{KK} being measured in the ⁴⁸ Run 2 sample; the values of A_K^{KK} measured in the Run 1 and Run 2 samples are compatible at the ⁴⁹ level of 2.6 standard deviations. These 2-body GLW updates form part of a suite of measurements ⁵⁰ employed within a combined LHCb measurement of γ , as described in Sec. 6.

51 **4.** Looking beyond $B^- \rightarrow DK^-$ decays

Reducing the uncertainty on γ requires the measurement of *CP* observables in many different tree-level decay modes. It is thus important to extend the ADS/GLW formalism beyond $B^- \rightarrow DK^-$ decays. This can be achieved through the study of two additional types of *CP*-violating $B^$ meson decays, namely $B^- \rightarrow DK^{*-}$ and $B^- \rightarrow D^*K^-$. LHCb has performed a measurement of *CP* observables in $B^- \rightarrow DK^{*-}$ decays, where the *D* meson is reconstructed in the 2-body $K^+\pi^-$, K^+K^- , $\pi^+\pi^-$ and $K^-\pi^+$ final states. The 4 fb⁻¹ analysis was shown at CKM 2016, and appears in Ref. [16]. It will soon be updated to include the full 5 fb⁻¹ dataset.

The $B^- \to D^* K^-$ decay is theoretically similar to $B^- \to D K^-$, with the additional feature that 59 the $D^* \to D\pi^0$ and $D^* \to D\gamma$ sub-decays differ in their strong phase by exactly π [7]. A measure-60 ment of *CP* observables in $B^- \to (D^* \to D\pi^0)K^-$ and $B^- \to (D^* \to D\gamma)K^-$ decays enables the 61 determination of γ , $r_B^{D^*K}$ and $\delta_B^{D^*K}$, and is thus well motivated to pursue across a variety of D final 62 states. The analysis of such decays is challenging, however, due to the low reconstruction effi-63 ciency of π^0 mesons and photons at LHCb. To circumvent this limitation, a partial reconstruction 64 approach has been developed at LHCb, where the π^0 or photon produced in the vector D^* decay is 65 not considered in the total invariant mass calculation. The technique focuses on the invariant mass 66 parameter m(Dh), which in the case of $B^- \to (D^* \to D\pi^0)K^-$ decays exhibits a distinctive double-67 peaked structure, as shown in Fig. 2 (left plot). The m(Dh) distribution for $B^- \to (D^* \to D\gamma)K^-$ 68 decays by comparison exhibits a gently sloping distribution, as shown in Fig. 2 (right plot). The 69 difference between the distributions is attributable to the different spins and masses of the π^0 and 70 photon produced in the strong D^* decay. 71

An additional benefit of this procedure is that the partially reconstructed $B^- \rightarrow D^*h^-$ candidates are selected in the same reconstructed final state as their $B^- \rightarrow Dh^-$ counterparts. This enables the simultaneous measurement of *CP* observables in both $B^- \rightarrow Dh^-$ decays (see Sec. 3) and $B^- \rightarrow D^*h^-$ decays within the same invariant mass fit.

Binned extended maximum likelihood fits to the data are shown in Figs. 3, 4 and 5 for the 76 $D \to K\pi$, KK and $\pi\pi$ modes, respectively. Candidate B^- mesons are shown in the left plots, while 77 B^+ candidates are shown in the right plots. This split by charge enables CP asymmetries to be 78 measured, by correcting raw asymmetries for production and detection asymmetry effects. Candi-79 dates reconstructed as $B^- \rightarrow D\pi^-$ are shown in the bottom plots, and candidates reconstructed as 80 $B^- \rightarrow DK^-$ are shown in the top plots. Each of the components of the invariant mass fit are listed 81 in the Fig. 3 legend. Several sources of background contribute in addition to the $B^- \rightarrow Dh^-$ and 82 $B^- \rightarrow D^* h^-$ signal contributions. 83

In Figs. 4 and 5, there is clear evidence of *CP*-violation in $B^- \to DK^-$ decays (red solid line). The $B^- \to (D^* \to D\pi^0)K^-$ (blue filled region) and $B^- \to (D^* \to D\gamma)K^-$ (cyan filled region)

Figure 2: Invariant mass fits to the m(DK) distributions of $B^- \to (D^* \to D\pi^0)K^-$ (left) and $B^- \to (D^* \to D\gamma)K^-$ (right) simulated decays. In the left plot, a small red component is included along with the primary green component in order to model the radiative tail. The visible difference in the $B^- \to (D^* \to D\pi^0)K^-$ (left) and $B^- \to (D^* \to D\gamma)K^-$ distributions enables them to be distinguished in the fit to data.

also have visible *CP* asymmetries, with opposing relative directions relative to each other. This is
 expected from the strong phase relationship between these modes.

v - ...

The *CP* observables measured for the partially reconstructed $B^- \to (D^* \to D\pi^0)K^-$ and $B^- \to (D^* \to D\gamma)K^-$ modes are

$$\begin{array}{rcl} A_{K}^{R,\pi,\gamma} = & +0.001 & \pm 0.022 \ (\text{stat.}) & \pm 0.007 \ (\text{syst.}) \\ A_{K}^{K\pi,\pi^{0}} = & +0.006 & \pm 0.012 \ (\text{stat.}) & \pm 0.004 \ (\text{syst.}) \\ A_{K}^{CP,\gamma} = & +0.273 & \pm 0.093 \ (\text{stat.}) & \pm 0.040 \ (\text{syst.}) \\ A_{K}^{CP,\pi^{0}} = & -0.151 & \pm 0.033 \ (\text{stat.}) & \pm 0.013 \ (\text{syst.}) \\ R_{K}^{CP,\gamma} = & 0.909 & \pm 0.087 \ (\text{stat.}) & \pm 0.099 \ (\text{syst.}) \\ R_{K}^{CP,\pi^{0}} = & 1.138 & \pm 0.029 \ (\text{stat.}) & \pm 0.082 \ (\text{syst.}) \end{array}$$

where the first uncertainties quoted are statistical and the second are systematic. This is the first time that $B^- \rightarrow D^*K^-$ decays have been measured at LHCb, and also the first time that the partial reconstruction method has been used in order to measure *CP* asymmetries. At present, only the GLW modes are included, but the approach will be extended to include the ADS modes in the near future.

Figure 3: Invariant mass fits to candidates reconstructed in the $[K^-\pi^+]_D h^-$ final state. Each component of the fit is listed in the legend; the total probability density function is shown by the thin blue solid line.

Figure 4: Invariant mass fits to candidates reconstructed in the $[K^-K^+]_D h^-$ final state.

Figure 5: Invariant mass fits to candidates reconstructed in the $[\pi^{-}\pi^{+}]_{D}h^{-}$ final state.

5. From *CP* observables to γ , $r_B^{D^*K}$ and $\delta_B^{D^*K}$

The six CP observables measured using partially reconstructed $B^- \to (D^* \to D\pi^0) K^-$ and 94 $B^-
ightarrow (D^*
ightarrow D\gamma) K^-$ decays can be used to constrain the fundamental parameters γ , $r_B^{D^*K}$ and 95 $\delta_B^{D^*K}$. The profile likelihood contours determined using only the measurements listed in Sec. 4 are 96 shown in Fig. 6. Although these measurements alone cannot uniquely determine γ , they do add sta-97 tistical power when combined with measurements of other B decays such as the fully reconstructed 98 $B^- \rightarrow DK^-$ modes. The contours indicate that the value of γ measured agrees within one standard 99 deviation with the LHCb combination average [2]. The preferred values of $r_B^{D^*K}$ and $\delta_B^{D^*K}$ also 100 align well with the current HFLAV world averages for $B^- \rightarrow D^* K^-$ decays, which are determined 101 using $D \to K_s^0 h^+ h^-$ decays [17]. 102

Figure 6: Profile likelihood contours for γ , $r_B^{D^*K}$ and $\delta_B^{D^*K}$, constructed using the six *CP* observables measured for partially reconstructed $B^- \to (D^* \to D\pi^0)K^-$ and $B^- \to (D^* \to D\gamma)K^-$ decays.

103 6. Combination

The *CP* observable results listed in Sec. 3 and Sec. 4 form part of a set of input parameters used in a dedicated measurement of γ at LHCb. This latest combination, which supersedes Ref. [2], contains the following updates and additions:

• $B^- \rightarrow D^*K^-$ (to appear in LHCb-PAPER-2017-021)

• $B^- \rightarrow DK^-$ GLW update (to appear in LHCb-PAPER-2017-021)

109 • $B^- \rightarrow DK^{*-}$ ADS/GLW [16]

110 • $B_s^0 \rightarrow D_s^- K^+$ time-dependent [18]

The value of γ measured by the full combination (to appear in LHCb-CONF-2017-004) is

$$\gamma = (76.8^{+5.1}_{-5.7})^{\circ}$$

and the corresponding one-dimensional profile likelihood distribution is shown in Fig. 7. This is the

most precise measurement of γ from a single experiment, and improves upon the precision quoted

in Ref. [2] by around 2° . The addition of further modes to this combination, as well as updates to

existing modes to include Run 2 data, promise to decrease the uncertainty on γ yet further.

Figure 7: One-dimensional profile likelihood contour for γ , as measured in the latest LHCb combination (to appear in LHCb-CONF-2017-004).

115 7. Conclusions

Updated measurements of CP observables in $B^- \rightarrow DK^-$ GLW decays are reported, which 116 improve upon those in Ref. [13] and are world-best measurements. Measurements of CP observ-117 ables in $B^- \to D^* K^-$ decays are also reported for the first time at LHCb, using a novel method 118 of partial reconstruction. Profile likelihood contours for γ , $r_B^{D^*K}$ and $\delta_B^{D^*K}$ are constructed, and are 119 in agreement with the LHCb combination value of γ [2] and the HFLAV averages for $r_B^{D^*K}$ and 120 $\delta_{R}^{D^{*}K}$ [17]. An updated combination measurement of γ is also reported, which supersedes Ref. [2] 121 due to the addition of the results presented within, as well as those in Refs. [16] and [18]. The 122 value of γ determined is the most precise measurement by a single experiment, and represents an 123 improvement in precision of around 2° relative to Ref. [2]. 124

125 References

- [1] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531; M. Kobayashi
 and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652.
- [2] R. Aaij and etal, *Measurement of the CKM angle* γ *from a combination of LHCb results*, Journal of High Energy Physics **2016** (2016) 87.
- [3] CKMfitter group, J. Charles *et al.*, *CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories*, Eur. Phys. J. C41 (2005) 1, arXiv:hep-ph/0406184.
- [4] UTfit collaboration, M. Bona *et al.*, *The unitarity triangle fit in the Standard Model and hadronic parameters from lattice QCD*, JHEP **10** (2006) 081, arXiv:hep-ph/0606167.
- I. Brod, A. Lenz, G. Tetlalmatzi-Xolocotzi, and M. Wiebusch, *New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ*, Phys. Rev. D 92 (2015) 033002.
- [6] J. Brod and J. Zupan, *The ultimate theoretical error on* γ *from* $B \rightarrow DK$ *decays*, Journal of High Energy Physics **2014** (2014), no.~1 51.
- [7] A. Bondar and T. Gershon, On ϕ_3 measurements using $B^- \rightarrow D^*K^-$ decays, Phys. Rev. D **70** (2004) 091503.
- [8] M. Gronau and D. London, *How to determine all the angles of the unitarity triangle from* $B_d^0 \to DK_s^0$ *and* $B_s^0 \to D\phi$, Phys. Lett. **B253** (1991) 483.
- [9] M. Gronau and D. Wyler, *On determining a weak phase from charged B decay asymmetries*, Phys.
 Lett. **B265** (1991) 172 .
- [10] D. Atwood, I. Dunietz, and A. Soni, *Enhanced CP violation with* $B \to KD^0(\overline{D}^0)$ *modes and extraction* of the CKM angle γ , Phys. Rev. Lett. **78** (1997) 3257, arXiv:hep-ph/9612433.
- [11] BaBar collaboration, J. P. Lees *et al.*, *Observation of direct CP violation in the measurement of the Cabibbo-Kobayashi-Maskawa angle* γ *with* $B^{\pm} \rightarrow D^{(*)}K^{(*)\pm}$ *decays*, Phys. Rev. **D87** (2013) 052015, arXiv:1301.1029.
- [12] Belle collaboration, *Evidence for the suppressed decay* $B^- \rightarrow DK^-$, $D \rightarrow K^+\pi^-$, Phys. Rev. Lett. **106** (2011) 231803, arXiv:1103.5951.
- [13] LHCb collaboration, R. Aaij *et al.*, *Measurement of CP observables in* $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ with two- and four-body D meson decays, Phys. Lett. **B760** (2016) 117, arXiv:1603.08993.
- [14] BaBar, B. Aubert *et al.*, *Measurement of ratios of branching fractions and CP-violating asymmetries* of $B^{\pm} \rightarrow D^* K^{\pm}$ Decays, Phys. Rev. **D78** (2008) 092002, arXiv:0807.2408.
- 156 [15] Belle, K. Abe *et al.*, *Study of* $B^{\pm} \rightarrow D_{CP}K^{\pm}$ *and* $D_{CP}^{*}K^{\pm}$ *decays*, Phys. Rev. **D73** (2006) 051106, 157 arXiv:hep-ex/0601032.
- [16] LHCb collaboration, *Study of the decay* $B^{\pm} \rightarrow DK^{*\pm}$ *with two-body D decays*, LHCb-CONF-2016-014.
- [17] Heavy Flavor Averaging Group, Y. Amhis *et al.*, *Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016*, arXiv:1612.07233, updated results and plots available at
 http://www.slac.stanford.edu/xorg/hfag/.
- [18] LHCb collaboration, Measurement of CP asymmetry in $B_s^0 \rightarrow D_s^{\pm} K^{\pm}$ decays, LHCb-CONF-2016-015.