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Available form factor parametrizations for B→D∗lν imply different theoretical assumptions and
different treatments of theoretical uncertainties. They give results for |Vcb| whose central values
are apart by up to 8%. The way the Caprini Lellouch Neubert (CLN) parametrization has been
used in experimental analyses sets theoretical uncertainties of the Heavy Quark Effective The-
ory (HQET) results on slope and curvature of the form factor ratios R1 and R2 to zero. Further-
more, the relation of curvature and slope of the axial form factor A1 is fixed to the HQET central
value. In view of the current experimental precision these uncertainties cannot be neglected any
more. Using the Boyd Grinstein Lebed (BGL) parametrization and taking into account theoret-
ical uncertainties in a conservative way, we extract |Vcb| from recent preliminary Belle data and
the world average of the total branching ratio. We include an O(10%− 20%) theoretical un-
certainty of HQET input due to unknown corrections beyond NLO which were neglected in all
previous analyses. This is important for reliable extractions of |Vcb| as well as precision tests of
the Standard Model with robust predictions of the lepton flavor nonuniversality observable R(D∗)

and the τ polarization asymmetry Pτ . Including input from Light Cone Sum Rules (LCSRs) we
find |Vcb| = 40.6

(
+1.2
−1.3

)
· 10−3, R(D∗) = 0.260(8) and Pτ = −0.47(4). Without LCSRs we find

|Vcb|= 41.5(1.3) ·10−3 and the same results for R(D∗) and Pτ . The R(D∗) anomaly is persistent,
but its statistical significance is slightly reduced to 2.6σ .
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1. Introduction

Vcb is an element of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix and as
such a fundamental parameter of the Standard Model (SM). It plays an important role for the
search for New Physics (NP) in global fits that overconstrain the Unitarity Triangle [1, 2]. The ratio
|Vub/Vcb| directly constrains one side of the CKM triangle. Different methods for the extraction of
Vcb show long-standing discrepancies. The Heavy Flavor Averaging Group (HFLAV) summarizes
the current situation as [3]

|Vcb|= (42.19±0.78) ·10−3 from B→ Xclνl , (1.1)

|Vcb|= (39.05±0.47exp±0.58th) ·10−3 from B→ D∗lνl , (1.2)

|Vcb|= (39.18±0.94exp±0.36th) ·10−3 from B→ Dlνl , (1.3)

where l = e,µ . For a discussion of B→Dlν see also Ref. [4]. A key issue in the extraction of |Vcb|
is that we have only a limited knowledge of the hadronic form factors. Recently, Belle published
new preliminary B→D∗lνl data which is independent of a certain form factor parametrization [5].
This triggered a lot of new theoretical studies [6, 7, 8, 9, 10, 11]. Here, we present the results
of our recent work Refs. [7, 9]. We discuss the available theoretical form factor constraints and
parametrizations in Sec. 2. Results for |Vcb| are shown in Sec. 3. After that, in Sec. 4 we give
predictions for the observables R(D∗) and Pτ , which can be used for precision tests of the SM. To
conclude, we briefly summarize our results.

2. Theory Constraints on Form Factors

In the limit of massless leptons the decay B→ D∗lν depends on two axial and one vector
form factor, which are denoted as A1,5 and V4, respectively. In order to treat B→ D∗τντ decays,
one needs the additional pseudoscalar form factor P1. We adopt here the notation of Ref [12], see
Ref. [9] for a translation table to the notation of Ref. [13]. The form factors can be written as
functions of the dimensionless kinematical quantity w = (m2

B +m2
D∗ −q2)/(2mBmD∗), where q2 ≡

(pB− pD∗)
2. Dispersion relations allow to relate the semileptonic region m2

l ≤ q2 ≤ (mB−mD∗)
2 to

the pair-production region beyond threshold q2 ≥ (mB +mD∗)
2. Using perturbative QCD [14], one

can constrain the form factors in the pair-production region. Then, one can translate this constraint
back to the semileptonic region using analyticity. This motivates the model independent Boyd
Grinstein Lebed (BGL) parametrization [13, 15, 16], which performs the form factor expansion

F(z) =
1

PF(z)φF(z)

∞

∑
n=0

aF
n zn , z≡

√
1+w−

√
2

√
1+w+

√
2
, (2.1)

with the outer function φ(z), the Blaschke factor P(z) and the expansion coefficients aF
n , for details

see Ref. [13]. The BGL parameters aF
n are bounded by the unitarity conditions [13]

∞

∑
n=0

(
aV4

n
)2 ≤ 1 ,

∞

∑
n=0

((
aA1

n
)2

+
(
aA5

n
)2
)
≤ 1 . (2.2)

The unitarity bounds Eq. (2.2) are the (weak) special case of the general (strong) unitarity condi-
tions which include also the contributions from the BGL parameters of all other b→ c channels,
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such as B→ D, B∗→ D, and B∗→ D∗ [13]. For B→ D∗lν the expansion parameter z lies in the
range 0 < z < 0.056. This and the unitarity bounds Eqs. (2.2) imply that the expansions Eq. (2.1)
converge very fast. We have already z3 ∼ 10−4, so that in practice taking into account exponents
up to the power of two is already enough.

Additional information on the form factors is provided by Lattice QCD (LQCD), Heavy Quark
Effective Theory (HQET) and Light Cone Sum Rules (LCSRs). LQCD provides the normal-
ization for the |Vcb| extraction with the form factor value A1(w = 1) = 0.902(12) (our average
from Refs. [17, 18]). LCSRs give values at the other end of the kinematic spectrum: A1(wmax) =

0.65(18), R1(wmax) = 1.32(4), and R2(wmax) = 0.91(17) [19]. We will show fit results with and
without including LCSR input. HQET and QCD sum rules [6, 12, 20, 21, 22, 23, 24, 25] give
strong constraints for all the B(∗)→ D(∗) form factors. In the heavy quark limit mc,b� ΛQCD all
of them can be written using a single Isgur-Wise function. NLO corrections at O(ΛQCD/mc,b,αs)

are known and can be written in terms of three subleading Isgur-Wise functions. Following the
calculation of Ref. [6] we updated all B(∗)→D(∗) form factor ratios, see Table II in Ref. [9], which
updates Table A.1 in Ref. [12]. The parametric error of the NLO contributions can be taken into
account by varying the corresponding subleading parameters as given in Ref. [6]. We also take into
account the theoretical uncertainty due to the unknown corrections beyond NLO, which are para-
metrically O(α2

s ,Λ
2
QCD/m2

c,b,αsΛQCD/mc,b). A reliable estimate of their size is complicated by
the fact that at zero recoil several form factors are protected from NLO power corrections through
Luke’s theorem [20], which does not apply to the N2LO corrections. The form factors which are
not protected by Luke’s theorem do have NLO corrections up to 60%. Actually, we have [9]

V6(w)
V1(w)

= 1.0 , (LO) (2.3)

V6(w)
V1(w)

= 1.58(1−0.18(w−1)+ . . .) . (NLO) (2.4)

For an estimate it is also instructive to compare LQCD and HQET results:

S1(w)
V1(w)

∣∣∣
LQCD

= 0.975(6)+0.055(18)w1 + . . . ,
S1(w)
V1(w)

∣∣∣∣
HQET

= 1.021(30)−0.044(64)w1 + . . .

A1(1)
V1(1)

∣∣∣
LQCD

= 0.857(15),
A1(1)
V1(1)

∣∣∣∣
HQET

= 0.966(28)

S1(1)
A1(1)

∣∣∣
LQCD

= 1.137(21),
S1(1)
A1(1)

∣∣∣
HQET

= 1.055(2),

where w1 = w−1. Between the LQCD and HQET results there are deviations of 5%−13% which
must come from higher order corrections beyond NLO.

Taking everything into account, N2LO corrections as large as O(10%− 20%) cannot be ex-
cluded for robust tests of the SM and reliable extractions of Vcb.

Using the results from HQET, it is possible to relate the BGL parameters of the other B(∗)→
D(∗) modes to the ones of B → D∗. In this way we derive the strong version of the unitarity
constraints Eq. (2.2), one for each Lorentz structure. In order to be conservative, in the derivation
of these strong unitarity constraints we allow for deviations from the central value of the HQET
result by±25% (±30%) at zero (maximal) recoil, which includes both NLO and N2LO corrections.
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Fit BGL weak BGL weak BGL strong BGL strong CLN CLN
LCSR × X × X × X
χ2/dof 28.2/33 32.0/36 29.6/33 33.1/36 35.4/37 35.9/40
|Vcb| 0.0424(18) 0.0413(14) 0.0415(13) 0.0406

(
+12
−13

)
0.0393(12) 0.0392(12)

Table 1: Extractions of |Vcb| using BGL and CLN parametrizations with and without LCSR input. For BGL
we also show fit results with and without strong unitarity constraints. Table adapted and extended from
Refs. [7, 9].

We use these constraints as a side condition in the fit. A different method to utilize the strong
unitarity relations is to eliminate directly some of the form factor parameters and to obtain in
this way a simplified form factor parametrization. Of course, the theoretical uncertainty of this
operation has to be taken into account. This is the strategy of the Caprini Lellouch Neubert (CLN)
parametrization [12]. A form of this parametrization which is traditionally used in experimental
analyses is (see e.g. Ref. [5])

hA1(w) = hA1(1)
(
1−8ρ

2z+(53ρ
2−15)z2− (231ρ

2−91)z3) , (2.5)

R1(w) = R1(1)−0.12(w−1)+0.05(w−1)2 , (2.6)

R2(w) = R2(1)+0.11(w−1)−0.06(w−1)2 , (2.7)

where R1 ≡ V4/A1 and R2 is related to the form factor ratio A5/A1. Note that in the experimental
analyses the slope and curvature of R1 and R2 as well as the relation of slope and curvature of hA1

are kept fixed, i.e., parts of the theoretical uncertainties of HQET which were noted in Ref. [12] are
neglected [6, 7, 8].

3. Extraction of Vcb

Summarizing the discussions of Sec. 2, we distinguish three ways to treat the B→ D∗ form
factors: (1) BGL using only weak unitarity, (2) BGL using strong unitarity as an additional con-
straint in the fit, and (3) CLN, which uses strong unitarity to obtain a simplified parametrization.
We fit the BGL and CLN parameters to the global HFLAV average of the total branching ratio
B(B̄0 → D∗+l−ν̄l) = 0.0488± 0.0010 [3] and the recent preliminary Belle data [5]. We use the
CLN parametrization in the traditional form of Eqs. (2.5)–(2.7). The results are shown in Table 1.
Our fit scenario (1) agrees very well with Ref. [8]. Note that while all of the fits are compatible
with each other, the central values for |Vcb| extracted using the BGL and the CLN parametrization
differ by up to 7.9%, and 5.4% including the LCSR input. Including the strong unitarity bounds,
the deviation is reduced to 5.6% and 3.6% (with LCSR). The main reason for the deviation is that
the CLN parametrization Eqs. (2.5)–(2.7) does not take into account any theoretical uncertainties
for the slope of R1 and R2, but fixes them to the central value of the HQET result. Consequently,
the BGL parametrization is more flexible, especially near w = 1. This is the most important kine-
matical region of the data, because here we have LQCD information on the normalization of the
form factor A1, which is essential for the extraction of Vcb. Relaxing the bound on R1 and R2 in the
CLN parametrization leads to a result which is quite comparable to the BGL fits, see Refs. [7, 11].
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Ref. Our result [9] [26] [27] [6] [10] [28, 29]
R(D∗) 0.260(8) 0.252(3) 0.252(2)(3) 0.257(3) 0.257(5) 0.252(4)

Pτ −0.47(4) −0.502(+5
−6)(17) −0.497(13)

Deviation 2.6σ 3.5σ 3.4σ 3.1σ 3.0σ 3.4σ

Table 2: Our results for R(D∗) and Pτ compared with other theoretical results available in the literature. The
experimental measurements are R(D∗)exp = 0.304(13)(7) [3] and Pexp

τ =−0.38(51)(+21
−16) [30, 31]. The last

line shows the respective deviation from the measurement R(D∗)exp.

4. SM Predictions for R(D∗) and Pτ

In order to predict R(D∗)≡B(B→ D∗τν)/B(B→ D∗lν) and the τ polarization asymmetry
Pτ ≡ (Γ+−Γ−)/(Γ+ +Γ−), where Γ± are the integrated polarized decay rates, we need theory
input for the pseudoscalar form factor P1. This form factor is not constrained by B→ D∗lν data.
Employing its BGL parametrization we use the three constraints (1) strong unitarity, (2) the kine-
matical endpoint relation P1(wmax) = A5(wmax) with our fit result for A5(wmax), and (3) the HQET
result P1(1) = 1.21±0.06±0.18, where the first error is the parametric NLO error and the second
error is our estimate of the N2LO uncertainty as 15% of the central value, see our discussion in
Sec. 2. These conditions determine the three P1 BGL parameters. Our results are shown in Table 2.
They are consistent with the results in the literature, however the value of R(D∗) and the uncer-
tainties that we obtain are larger. We find a 2.6σ deviation from the experimental measurement
of R(D∗)exp.

5. Conclusions

We use recent preliminary Belle data on B→ D∗lν which is independent of a particular form
factor parametrization in order to reappraise the methodology of exclusive Vcb extractions and
predictions of R(D∗) and Pτ . It turns out that the BGL parametrization and the form of the CLN
parametrization as used in experimental analyses give different results for Vcb. This stays true when
one includes strong unitarity constraints as external constraints on the BGL parameters. The reason
is that the used form of the CLN parametrization neglects important theoretical uncertainties which
leads to less flexibility of the parametrization near w = 1, where LQCD gives information on the
form factor normalization, which is essential for the determination of |Vcb|. We advocate therefore
to use the BGL parametrization with the strong unitarity constraints as side conditions, taking into
account the input from HQET in a conservative way. We estimate the theoretical uncertainty of the
HQET input due to unknown higher order corrections to be O(10%−20%) on top of the parametric
NLO error. Our results for |Vcb|, R(D∗) and Pτ are given in Tables 1 and 2. The R(D∗) anomaly is
persistent, but slightly reduced to 2.6σ .

As we rely except for the world average of the total branching ratio on recent, preliminary
data, we have to be patient: the Vcb puzzle is not yet solved. A reanalysis of previous BaBar and
Belle data is necessary, taking properly into account theoretical uncertainties. Together with future
lattice data which determines the slope of the form factors this will conclusively settle the case.
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