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1. Introduction

Establishing the properties of the Higgs boson couplings to the Standard Model particles is
one of the main tasks of the LHC experiment [1]. The associate production tt̄H offers a direct
way to probe the strength of the top–Higgs Yukawa coupling and may be particularly sensitive to
physics beyond the Standard Model. Therefore, the improvement of the accuracy for the theoretical
predictions is of the central importance. The next-to-leading-order (NLO) QCD predictions were
obtained some time ago [2, 3], later they were recalculated and matched to parton showers [4, 5, 6,
7]. Also the QCD-electro weak corrections were calculated [8, 9]. Finally, the NLO EW and QCD
corrections to the hadronic tt̄H production with off-shell top and antitop quarks were obtained [10,
11]. The NNLO QCD analysis is currently out of reach so the calculation of soft gluon emission
corrections is one of the best way to improve theoretical predictions. In Ref. [12] we presented the
first calculation of the resummed total cross section for the tt̄H production at the next-to-leading-
logarithmic (NLL) accuracy. The calculation relied on application of the traditional Mellin-space
resummation formalism in the absolute threshold limit, i.e. in the limit of the partonic energy√

ŝ approaching the production threshold M = 2mt +mH . Subsequently we have performed [13]
resummation of NLL corrections arising in the limit of

√
ŝ approaching the invariant mass threshold

Q, where Q2 = (pt + pt̄ + pH)
2. Recently we extended this calculation to the next-to-next-to-

leading-logarithmic (NNLL) accuracy [14]. Threshold resummation can be also performed in the
framework of the soft-collinear effective theory (SCET). For the tt̄H process this approach was first
applied in Ref. [15] obtaining approximate NNLL and later full NNLL [16] accuracy.

In this note we report the threshold resummation in the invariant mass limit at the NNLL
accuracy using the direct QCD Mellin-space approach [17]. Taking the Mellin transform allows
one to systematically treat the logarithmic terms of the form αn

s [logm(1−ρ)/(1−ρ)]+, with m≤
2n− 1 and ρ = Q2/ŝ, appearing in the perturbative expansion of the partonic cross section to all
orders in αs. In Mellin space these logarithms turn into logarithms of the variable N, and the
threshold limit z→ 1 corresponds to the limit N→∞. The Mellin moments of the cross section are
taken w.r.t. the variable ρ = Q2/ŝ : σ̂(N,Q2) =

∫ 1
0 dρ ρN−1σ̂(ρ,Q2).

We present numerical prediction for the NNLL resummed cross sections matched to the fixed
order NLO results. In particular, we study the difference between the NNLL results and the NNLL
results with a colour-averaging approximation of the hard function.

2. Resummation at invariant mass threshold

The resummed cross section in the Mellin space has the form [18]

d ˜̂σ (res)
i j→klB

dQ2 (N,Q2,µ2
F ,µ

2
R) = Tr

[
Hi j→klB(Q2,µ2

F ,µ
2
R)Si j→klB(N +1,Q2,µ2

F ,µ
2
R)
]

(2.1)

× ∆
i(N +1,Q2,µ2

F ,µ
2
R)∆

j(N +1,Q2,µ2
F ,µ

2
R),

where Hi j→klB indicates the hard-scattering contributions (including phase space factor), Si j→klB

contains a soft wide-angle emission corrections and function ∆i(∆ j) sums the softcollinear and
collinear contributions from the incoming parton i (parton j) [19]. The trace in (2.1) is taken over
colour space.
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The soft function is given by a solution of the renormalization group equation [20, 21]:

Si j→klB(N,Q2,µ2
F ,µ

2
R) = Ūi j→klB(N,Q2,µ2

F ,µ
2
R) S̃i j→klB(αs(Q2/N̄2))Ui j→klB(N,Q2,µ2

F ,µ
2
R),

(2.2)
where S̃i j→klB plays a role of a boundary condition.

Both hard function and soft matrix initial condition can be calculated perturbatively [20, 22]:
Hi j→klB =H(0)

i j→klB+
αs
π

H(1)
i j→klB+ . . . and S̃i j→klB = S̃(0)

i j→klB+
αs
π

S̃(1)
i j→klB+ . . .. At the NNLL accuracy

knowledge of S̃(1)
i j→klB and H(1)

i j→klB is required [23, 24] whereas for NLL only leading terms H(0)
i j→klB,

S̃(0)
i j→klB are needed. Hard function Hi j→klB carries no dependence on N. The dependence on N in

the soft function S̃R enters only through the argument of αs and (after expanding in αs) results in
α2

s (µ
2
R) logN term.

The soft function evolution matrices Ui j→klB, Ūi j→klB contain logarithmic enhancements due to
soft wide-angle emissions [25]. Ui j→klB is defined as a path-ordered exponent

Ui j→klB
(
N,Q2,µ2

F ,µ
2
R
)
= Pexp

[∫ Q/N̄

µF

dq
q

ΓΓΓi j→klB
(
αs
(
q2))] ,

where the soft anomalous dimension is calculated as a perturbative function in αs, ΓΓΓi j→klB (αs) =(
αs
π

)
ΓΓΓ
(1)
i j→klB +

(
αs
π

)2
ΓΓΓ
(2)
i j→klB + . . . [12, 26]. In order to diagonalize the one-loop soft anomalous

dimension matrix we make use of the transformation [25]:

ΓΓΓ
(1)
R = R−1

ΓΓΓ
(1)
i j→klBR (2.3)

and other matrices are transformed using diagonalization matrix R: ΓΓΓ
(2)
R = R−1 ΓΓΓ

(2)
i j→klB R, HR =

R−1 Hi j→klB
(
R−1

)†
, S̃R =R† S̃i j→klB R. In the R-representation the evolution factor UR (similarly

ŪR) can be written at NNLL accuracy as [27, 28]:

UR(N,Q2,Q2,µ2
R) =

(
1+

αs(µ
2
R)

π[1−2αs(µ2
R)b0 logN]

K
)[

egs(N)
−→
λ (1)
]

D

(
1− αs(µ

2
R)

π
K
)
, (2.4)

where KIJ = δIJλ
(1)
I

b1
2b2

0
−

(
ΓΓΓ
(2)
R

)
IJ

2πb0+λ
(1)
I −λ

(1)
J

and λ
(1)
I are the eigenvalues of ΓΓΓ

(1)
i j→klB. By

[
egs(N)

−→
λ (1)
]

D
we have denoted diagonal matrix with exponentiated eigenvalues on diagonal and gs(N) is a func-
tion which resumms logarithms of N (see [14] for expression), b0 and b1 are the first two coeffi-
cients of expansion βQCD in αs.

The resummation-improved cross sections for the pp→ tt̄H process are obtained through
matching the resummed expression with the full NLO cross sections

dσ
(matched)
h1h2→klB

dQ2 (Q2,µ2
F ,µ

2
R) =

dσ
(NLO)
h1h2→klB

dQ2 (Q2,µ2
F ,µ

2
R)+

dσ
(res−exp)
h1h2→klB

dQ2 (Q2,µ2
F ,µ

2
R) (2.5)

with
dσ

(res−exp)
h1h2→klB

dQ2 = ∑
i, j

∫
C

dN
2πi

ρ
−N f (N+1)

i/h1
f (N+1)

j/h2

d ˜̂σ (res)
i j→klB

dQ2 −
d ˜̂σ (res)

i j→klB

dQ2

∣∣∣∣∣
(NLO)

 , (2.6)

2



P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
3
3
9

Improving predictions for associated tt̄H production at the LHC: soft gluon resummation through NNLL accuracy
Tomasz Stebel

√
S [TeV] µ0 NLO [fb] NLO+NLL[fb] NLO+NNLL C̄ [fb] NLO+NNLL[fb]

14 Q 506+11.8%
−11.5% 530+9.8%

−9.2% 598+7.8%
−7.3% 603+7.8%

−6.9%
Q/2 566+9.9%

−10.6% 576+8.7%
−8.0% 600+6.1%

−7.0% 602+6.0%
−6.4%

M/2 604+6.1%
−9.2% 609+8.4%

−7.8% 609+6.9%
−6.9% 607+5.7%

−6.1%

Table 1: Total cross section predictions for pp→ tt̄H at various central scale choices and resummation
accuracies. The listed error is the theoretical error due to scale variation calculated using the 7-point method.

where d ˜̂σ (res)
i j→klB/dQ2 is given by (2.1) and d ˜̂σ (res)

i j→klB/dQ2
∣∣
(NLO)

represents its perturbative expansion

truncated at NLO. f (N)
i/h is a Mellin moment (with respect of x variable) of parton distribution func-

tion for parton i in hadron h.
Apart from the full NNLL cross sections we also consider the NLL results, obtained by taking

Hi j→klB = H(0)
i j→klB, S̃i j→klB = S̃(0)

i j→klB, K = 0 and dropping NNLL terms in ∆ and gs. Additionally,
we study the NNLL results where an approximation to the non-logarithmic terms, forgoing the
colour structure of the one-loop hard corrections, has been applied. In this approximation, to
which we refer as "NNLL C̄ ", we calculate a hard coefficient C̄ (1) as a colour average of O(αs)

non-logarithmic contributions:

C̄
(1)
i j→klB(Q

2,µ2
F ,µ

2
R) = Tr

[
H(1)

R S̃(0)
R +H(0)

R S̃(1)
R

]
/Tr
[
H(0)

R S̃(0)
R

]
(2.7)

Because of the form of S̃(0) [14], the one-loop hard coefficient C̄ (1) involves only virtual hard
contributions summed over colour channels. Accounting for the C̄ (1) coefficient, Eq. (2.1) is then
transformed into (we skip arguments for simplicity and write it in R-representation):

d ˜̂σ (NNLL C̄ )
i j→klB

dQ2 =
(

1+
αs

π
C̄

(1)
i j→klB

)
Tr
[

H(0)
R ŪR S̃(0)

R UR

]
∆

i
∆

j. (2.8)

3. Numerical results

In this section we present our numerical results obtained for
√

S = 14 TeV. Results for the total
cross section are obtained by integrating out the invariant mass distribution (2.5) over invariant mass
Q. We use mt = 173 GeV, mH = 125 GeV and PDF4LHC15_100 sets [29] . The NLO cross section
is calculated using the aMC@NLO code [30]. For the evaluation of the first-order hard function
matrix H(1)

i j→klB the one-loop virtual corrections to the process (decomposed into various colour
transitions IJ) are required. We extract them numerically by modification of the publicly available
PowHel implementation of the tt̄H process [6].

Two choices for the central value of the renormalization and factorization scales are used:
µ0 = µF,0 = µR,0 = Q and µ0 = µF,0 = µR,0 = M/2 = mt +mH/2. The former choice is motivated
by invariant mass Q being the natural scale for the invariant mass kinematics used in resummation.
The latter choice of the scale is often made in the NLO calculations, see e.g. [2].

In Table 1 we show our numerical predictions for the total cross sections for three scale
choices: µ0 = Q, µ0 = M/2 and ‘in-between’ value of µ0 = Q/2. The theoretical error due to

3
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Figure 1: Scale dependence of the total cross section for the process pp→ tt̄H at the LHC with
√

S = 14
TeV. Results shown for the choice µ = µF = µR and two central scale values µ0 =Q (left plot) and µ0 =M/2
(right plot).

scale variation is calculated using the 7-point method1. It can be seen that for all scale choices the
theoretical error decreases when one improves the predictions by adding resummation. For exam-
ple, for µ0 = Q/2 the theoretical precision of the NLO+NNLL prediction is improved by about
40% with respect to the NLO result, bringing the scale error calculated with the 7-point method
down to less than 6.5% of the central cross section value. Comparing last two columns of Table 1
we can conclude that the averaging of non-logarithmic contributions and removing H(1)

R S̃(1)
R term

result in a difference of below 1%.
In Figure 1 we show the scale dependence of tt̄H total cross sections calculated with the

factorization and renormalization scale kept equal, µ = µF = µR. We observe a substantial increase
in the stability of the cross section value w.r.t. scale variation as the accuracy of resummation
improves from NLL to NNLL. The NLO+NNLL prediction is characterised by a very low scale
dependence. The rise of the cross section at small scales (for µ0 = M/2) is driven by the fall of
the expansion of resummed result NNLL|NLO (second term in Eq. (2.6)) and is a consequence of
the relatively large scale dependence of NLO qg channel contribution. This contribution appears
first at NLO so no resummation is performed for it. Even though the qg production channel is
formally subleading w.r.t qq̄ and gg channels, it carries a relatively large numerical significance at
low scales [14, 15]. Furthermore, we see that the colour-averaging procedure introduced in Eqs.
(2.7) and (2.8) has only a minimal impact on the numerical results, i.e. NNLL C̄ results provide a
very good approximation of the full NNLL results.
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