

Part I: Heavy baryon forward-backward asymmetries in $p\bar{p}$ collisions. Part II: Confirmation of the exotic state $X(5568) \rightarrow B_s^0 \pi^{\pm}$ in $p\bar{p}$ collisions.

B. Hoeneisen*

Universidad San Francisco de Quito E-mail: brucel@fnal.gov, bhoeneisen@usfq.edu.ec

The DØ Collaboration presents measurements of forward-backward asymmetries of baryon production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. Also presented is a confirmation of the exotic state $X(5568) \rightarrow B_s^0 \pi^{\pm}$ with B_s^0 reconstructed in the semi-leptonic decay $B_s^0 \rightarrow \mu^{\mp} D_s^{\pm} X$.

EPS-HEP 2017, European Physical Society conference on High Energy Physics 5-12 July 2017 Venice, Italy

*Speaker. [†]Representing the DØ collaboration

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Part I: Heavy baryon forward-backward asymmetries in $p\bar{p}$ collisions

Measurements of forward-backward production asymmetries in $p\bar{p}$ collisions are a legacy of the Tevatron that test models of forward production.

In the coordinate system in which the *z* axis is aligned with the proton beam direction we define the rapidity $y \equiv \frac{1}{2} \ln [(E + p_z)/(E - p_z)]$, where p_z is the Λ or $\bar{\Lambda}$ momentum component in the *z* direction and *E* is its energy in the $p\bar{p}$ center of mass frame. The Λ ($\bar{\Lambda}$) is defined as "forward" if its longitudinal momentum is in the $p(\bar{p})$ direction. We obtain the numbers $N_F(\Lambda)$ and $N_B(\Lambda)$ ($N_F(\bar{\Lambda})$ and $N_B(\bar{\Lambda})$) of reconstructed Λ 's ($\bar{\Lambda}$'s) in the "forward" and "backward" categories, respectively, in bins of |y|. The forward-backward asymmetry is defined as

$$A_{FB}(\Lambda,\bar{\Lambda}) \equiv \frac{N_F(\Lambda) - N_B(\Lambda) + N_F(\bar{\Lambda}) - N_B(\bar{\Lambda})}{N_F(\Lambda) + N_B(\Lambda) + N_F(\bar{\Lambda}) + N_B(\bar{\Lambda})}.$$
(1.1)

The DØ detector is well suited to measure forward-backward asymmetries because the initial state is the CP eigenstate $p\bar{p}$, and the solenoid and toroid magnetic fields can be reversed periodically allowing studies and cancellations of systematic uncertainties. The measurements are based on 10.4 fb⁻¹ of $p\bar{p}$ collision data at $\sqrt{s} = 1.96$ TeV collected by the D0 experiment at the Fermilab Tevatron collider.

Figure 1: Left: Forward-backward asymmetries $A_{FB}(\Lambda, \bar{\Lambda})$ measured with three data sets: zero bias, and data triggered on J/ψ or μ [1]. Right: Comparison of $\bar{\Lambda}/\Lambda$ production ratios in pp collisions with $\left[1 - A_{FB}(\Lambda, \bar{\Lambda})\right] / \left[1 + A_{FB}(\Lambda, \bar{\Lambda})\right]$ measured in $p\bar{p}$ collisions (see references in [1]).

Figure 1 presents measurements of $A_{FB}(\Lambda, \bar{\Lambda})$ in $p\bar{p}$ collisions, and compares these results with $\bar{\Lambda}/\Lambda$ production ratios measured by several pp collision experiments. A summary of forwardbackward asymmetry measurements of Λ , Ξ^- , Ω^- , B^- , and baryons containing a c quark or a bquark is presented in Fig. 2. Note the hierarchy of the forward-backward asymmetries of baryons at a given rapidity |y|: $A_{FB}(H_c, \bar{H}_c) > A_{FB}(\Lambda, \bar{\Lambda}) > A_{FB}(H_b, \bar{H}_b)$ with $A_{FB}(H_b, \bar{H}_b)$ consistent with zero. H_c are baryons containing a c quark, and H_b are baryons containing a b quark. In Fig. 2 the H_c are prompt, i.e. exclude H_b decays, and the Λ exclude H_c and H_b decays. The forward-backward asymmetry of Λ_b is presented in Ref. [6].

Figure 2: Left: Forward-backward asymmetry measurements of Λ , Ξ^- , Ω^- , and B^- [1, 2, 3]. Right: A_{FB} of prompt Λ , and of heavy baryons with a *c* or *b* quark (from inclusive decays $H_c \rightarrow \mu^+ \Lambda X$, and $H_b \rightarrow \mu^- H_c X$ followed by $H_c \rightarrow \Lambda X$) [4].

Figure 3: Left: Two Λ and $\overline{\Lambda}$ production mechanisms: " α " is forward, and " β " is central and symmetric in rapidity *y*. Right: Their ratio $r \equiv \alpha/\beta$ is a simple and universal function of "rapidity loss" $\Delta y = y_p - y$ [5].

We conclude that a simple two component Λ production model (central production β and forward production α) adequately represents all data, see Fig. 3 [5]. At small rapidity loss, the presence of the α component depends on having a shared (di)quark between the outgoing baryon and the parent proton.

2. Part II: Confirmation of the exotic state $X(5568) \rightarrow B_s^0 \pi^{\pm}$ in $p\bar{p}$ collisions

The DØ experiment has found evidence of a $B_s \pi^{\pm}$ resonance at M = 5568 MeV, slightly above threshold [7]. See Fig. 4. The B_s^0 was reconstructed in the hadronic channel

$$B_s^0 \to J/\psi\phi, \qquad J/\psi \to \mu^+\mu^-, \qquad \phi \to K^+K^-.$$
 (2.1)

The B_s^0 is fully mixed so its quark anti-quark composition is undetermined. The non-zero width of the resonance $21.9 \pm 6.4_{-2.5}^{+5.0}$ MeV implies a strong decay.

Figure 4: Left: Invariant mass of $X(5568) \rightarrow B_s^0 \pi^{\pm}$ with B_s^0 reconstructed in the hadronic channel $B_s^0 \rightarrow J/\psi\phi$. Right: Same with cone cut $\Delta R(B_s^0, \pi) = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3$ [7].

The interpretation of the resonance as a molecular state, e.g. a colorless $\bar{B}_d^0(b\bar{d})$ loosely coupled to a colorless $K^+(u\bar{s})$, should have a mass close to $m(B_d^0) + m(K^+) = 5773$ MeV, and therefore is disfavored. A tightly bound tetraquark e.g. $(bd)(\bar{s}\bar{u})$, $(bu)(\bar{s}\bar{d})$, $(su)(\bar{b}\bar{d})$, or $(sd)(\bar{b}\bar{u})$ has been considered. See also Ref. [8] for a scalar-scalar diquark-antidiquark 0^+ state.

Figure 5: Left: $X(5568) \rightarrow B_s^0 \pi^{\pm}$ with B_s^0 decaying in the semi-leptonic channel $B_s^0 \rightarrow \mu^{\mp} D_s^{\pm} X$, $D_s^{\pm} \rightarrow \phi \pi^{\pm}$, $\phi \rightarrow K^+ K^-$. Right: $m(K^+ K^- \pi^{\pm})$ for right sign $\mu^{\pm} \phi \pi^{\mp}$ showing D^{\pm} and D_s^{\pm} meson decays, and wrong sign combination [9].

This $B_s \pi^{\pm}$ resonance is now confirmed with B_s^0 reconstructed in the semi-leptonic channel [9].

$$B_s^0 \to \mu^{\mp} D_s^{\pm} X, \qquad D_s^{\pm} \to \phi \pi^{\pm}, \qquad \phi \to K^+ K^-.$$
 (2.2)

See Figs. 5, 6 and 7. The requirement 4.5 GeV $< m(\mu^+D_s^-) < m(B_s^0)$ reduces the v_{μ} contribution to the mass resolution. The hadronic and semileptonic channels have independent events, signals, backgrounds and triggers. A comparison of the two measurements is presented in Table 1.

Figure 6: Weighting MC in $p_T(\mu)$ and $p_T(\mu D_s)$ to fit data [9].

Figure 7: Semileptonic channel (no cone cut is applied) [9].

	Semileptonic	Hadronic	Hadronic
		with cone cut	no cone cut
Mass [MeV]	$5566.7^{+3.6}_{-3.4}\pm1.0$	$5567.8 \pm 2.9^{+0.9}_{-1.9}$	5567.8
Width [MeV]	$6.0^{+9.5+1.9}_{-6.0-4.6}$	$21.9 \pm 6.4^{+5.0}_{-2.5}$	21.9
Events	$139^{+51+10.9}_{-63-31.5}$	$133\pm31\pm15$	106 ± 23
Significance*	3.2σ	5.1σ	3.9 σ
Fraction**	$7.3^{+2.8}_{-2.4}{}^{+0.6}_{-1.7}\%$	$8.6 \pm 1.9 \pm 1.4\%$	

Table 1: Comparison of measurements of the $B_s^0 \pi^{\pm}$ resonance with B_s^0 reconstructed in the hadronic and semi-leptonic channels [9]. The combined semi-leptonic and hadronic channel significance with (without) hadronic channel cone cut is 5.7 σ (4.7 σ), including systematics and look-elsewhere-effect (LEE). * With systematics, and LEE for the hadronic channel. ** Fraction of B_s^0 from *X*(5568).

In conclusion, the DØ experiment has found evidence of a $B_s^0 \pi^{\pm}$ resonance in $p\bar{p}$ collisions with B_s^0 reconstructed in hadronic and semi-leptonic channels. This resonance has not been confirmed by LHCb or CMS in pp collisions.

References

- [1] V.M. Abazov et al. (D0 Collaboration), "Measurement of the forward-backward asymmetry of Λ and $\overline{\Lambda}$ production in $p\overline{p}$ collisions", Phys. Rev. **D** 93, 032002 (2016), arXiv:1511.05113.
- [2] V.M. Abazov et al. (D0 Collaboration), "Measurement of the forward-backward asymmetries in the production of Ξ and Ω baryons in $p\bar{p}$ collisions" Phys. Rev. **D** 93, 112001 (2016), arXiv:1605.03513.
- [3] V.M. Abazov et al. (D0 Collaboration), "Measurement of the forward-backward asymmetry in the production of B^{\pm} in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV", Phys. Rev. Lett. 114, 051803 (2015), arXiv:1411.3021.
- [4] V.M. Abazov et al. (D0 Collaboration), "Measurement of the forward-backward asymmetries of baryons containing a *c* or *b* quark in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV", conference note, https://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B70/.
- [5] B. Hoeneisen, "Ratio between two Λ and $\overline{\Lambda}$ production mechanisms in *p* scattering", Phys. Lett. B 760, p. 242 (2016), arXiv:1604.05379.
- [6] V.M. Abazov et al. (D0 Collaboration), "Measurement of the forward-backward asymmetry in Λ_b^0 and $\bar{\Lambda}_b^0$ baryon production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV", Phys. Rev. **D** 91, 072008 (2015). arXiv:1503.03917.
- [7] V.M. Abazov et al. (D0 Collaboration), "Evidence for a $B_s \pi^{\pm}$ state", Phys. Rev. Lett. 117, 022003 (2016), arXiv:1602.07588.
- [8] Jian-Rong Zhang, Jing-Lan Zou, Jin-Yun Wu, "0⁺ tetraquark states from improved QCD sum rules: delving into *X*(5568)", arXiv:1705.03741 (2017).
- [9] V.M. Abazov et al. (D0 Collaboration), "Confirmation of the X(5568) with semileptonic decays of the B_s^0 meson", conference note, https://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B68/.