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In this presentation, we will focus on a recent applications of the GOSAM 2.0 automated frame-
work which goes beyond the official scope of this code, originally designed for one-loop fixed
order calculations. In particular, we describe a customized version of GOSAM that has been re-
cently employed to study the production of a top-antitop pair in association with a vector boson
or with the Higgs boson to next-to-next-to-leading logarithmic accuracy. In the context of these
calculations, the modified version of GOSAM was used to evaluate the NLO hard functions which
are needed to carry out the resummation of soft gluon emission effects. We also briefly comment
on the ongoing efforts to generalize integrand reduction and unitarity for higher order calculation,
towards the goal of developing efficient alternative computational techniques for the evaluation
of scattering amplitudes beyond one loop.
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1. Introduction

Automation for one-loop calculation has been successfully achieved over the past decade.
Thanks to mathematical and technical development in the field, several algorithms have been de-
signed and implemented in a series of highly efficient multi-purpose computational tools.

The situation beyond one loop is much more variegated. The theoretical understanding of the
structure of scattering amplitudes at multi-loop has been the subject of several studies. The use of
new mathematical approaches, in particular techniques borrowed from algebraic geometry, led to
elegant and general results for the structure of the integrands of scattering amplitudes. Moreover, by
means of rigorous proofs, such as the Maximum-Cut Theorem, it was shown that the construction of
amplitudes based on their kinematic cuts can be safely achieved for any number of loops. Overall,
on the one hand, the progress in the field is undeniable. On the other hand, the conceptual progress
has not yet been translated in efficient new computational algorithms. At present, calculations
beyond one loop are for the most part performed following the “traditional” path of generating
Feynman diagrams with computer algebra, reducing them by tensorial reduction and projections
over convenient form factors, minimizing the number of Master Integrals (MIs) using integration-
by-parts (IBP) identities, and finally evaluating a minimal set of MIs using analytic expressions if
possible, otherwise numerically. The hope for the near future is that, as already realized at one-
loop, also two- and higher-loop calculations will benefit from the development of new algorithms
based on unitarity or higher-order integrand reduction.

In this conference paper, we will report on two different projects, that share the common
feature of going beyond the one loop level. In the first and more extensive part, we will discuss
an extension of the GOSAM framework for automated one-loop calculations [1, 2] to evaluate the
NLO hard functions which are needed to carry out the resummation of soft gluon emission effects.
In a series of recent papers [3–6], this novel feature of GOSAM was applied to study the associated
production of a top quark pair and a boson (Higgs, W , or Z) at next-to-next-to-leading logarithmic
(NNLL) accuracy. A second topic, namely an overview of the recent developments towards an
integrand-reduction based approach to two-loop (and higher-order) calculations, will be the subject
of our final outlook.

2. Soft Limit and Factorization

The partonic cross section for top pair production in association with a Higgs, W , or Z bo-
son receives potentially large corrections from soft gluon emission diagrams. Schematically, the
partonic cross section depends on logarithms of the ratio of two different scales,

L = ln
(

“hard” scale
“soft” scale

)
where potentially Lαs ∼ 1. In this situation, the powers of αs alone do not guarantee the correct
hierarchy between the various terms in the expansion, and one needs to reorganize the perturbative
expansion and resum these large corrections to all orders in perturbation theory.

The resummation of these effects to NNLL accuracy can be carried out by exploiting the
factorization properties of the partonic cross section in the soft limit, which can be studied with

1



P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
3
9
2

Hard Functions at NLO with GOSAM Giovanni Ossola

effective field theory methods [7] and by subsequently employing renormalization group improved
perturbation theory techniques. In the following, for simplicity, we summarize the main formulas
in the case of pp → tt̄W production. Analogous formulae can be obtained for pp → tt̄Z and
pp→ tt̄H, we refer the reader to [3] for more details.

The associated production of a top quark pair and W boson receives contributions from the
partonic processes

q(p1)+ q̄(p2)−→ t(p3)+ t̄(p4)+W (p5)+X , (2.1)

where X indicates the unobserved partonic final-state radiation. After defining the invariants ŝ =
(p1 + p2)

2 = 2p1 · p2 and M2 = (p3 + p4 + p5)
2, we define the soft or partonic threshold limit as

the region in which z ≡ M2/ŝ→ 1. Indeed, in this kinematic region, the final state radiation can
only be soft. We write the factorization formula for the cross section in the partonic threshold limit
as

σ (s,mt ,mW ) =
1
2s

∫ 1

τmin

dτ

∫ 1

τ

dz√
z ∑

i j
ffi j

(
τ

z
,µ

)∫
dPStt̄W Tr

[
Hi j ({p},µ)Si j

(
M(1− z)√

z
,{p},µ

)]
, (2.2)

where s the square of the hadronic center-of-mass energy, τmin = (2mt +mW )2 /s, and τ = M2/s.
Following [3–6], we denote the hard functions with H, the soft functions with S, and the luminosity
functions with ff . We refer the reader to these papers for more details.

For qq̄-initiated processes, such as pp→ tt̄W , the hard and soft functions are two-by-two
matrices in color space (these become three-by-three matrices in color space for gg-initiated pro-
cesses, which appear for example in pp→ tt̄Z). The hard functions satisfy renormalization group
equations governed by the soft anomalous dimension matrices Γ

i j
H [8, 9]. In order to carry out the

resummation to NNLL accuracy, the hard functions, soft functions, and soft anomalous dimensions
must be computed at NLO accuracy.

The NLO soft functions and soft anomalous dimensions are the same for the three processes
discussed above, and are provided in [3–5]. On the contrary, NLO hard functions are process
dependent and receive contributions exclusively from NLO virtual corrections. Such objects can
be indeed computed by means of customized version of the automated tools for NLO calculations.

3. Hard functions at NLO with GoSam

The GOSAM framework [1, 2] combines automated Feynman diagram generation [10–13],
with a variety of reduction techniques, to allow for the automated numerical evaluation of virtual
one-loop corrections to any given process. After all relevant Feynman integrals are generated,
virtual corrections can be evaluated using the integrand reduction via Laurent expansion [14, 15]
provided by NINJA [16], the d-dimensional integrand-level reduction method [17–19], as imple-
mented in SAMURAI [20], or the tensorial decomposition provided by GOLEM95C [21–23].

By default, GOSAM computes squared amplitudes summed over colors. To build the hard
functions we need instead to combine color decomposed amplitudes.

For each given process, GOSAM projects each Feynman diagram onto an appropriate process
dependend color basis {|ci〉}, thus casting it in the form

D =
k

∑
i=1

Ci|ci〉 . (3.1)
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After the basis is determined, the code computes, once for all, all entries of the matrices 〈ci|c j〉
which will be relevant for the evaluation of the hard functions. For any given process, we denote
the tree-level matrix element and the tree-level squared amplitude respectively as

|M (0)〉=
k

∑
j=1

C
(0)
j |c j〉 and

∣∣∣M (0)
∣∣∣2 = k

∑
i, j=1

(
C

(0)
i

)∗
C

(0)
j 〈ci|c j〉 . (3.2)

In order to obtain the NLO prediction, we should compute the interference term between the tree-
level and one-loop matrix-elements. We perform this contraction already at the integrand level

Nα(q) =
k

∑
i, j=1
〈ci|c j〉

(
C

(0)
i

)∗
C

(1)
j (q), (3.3)

where C
(1)
j is formed by the sum over the corresponding coefficients of all diagrams that share a set

of denominators. The numerator functions obtained in this manner are then passed to the reduction.
In order to compute the hard functions, instead of summing over all colors, we need to extract

all contributions to the virtual amplitudes for fixed values of i and j. The LO and NLO hard
function can be indeed evaluated as

H(0)
i j =

1
4

1
〈ci|ci〉〈c j|c j〉

〈ci|M (0)〉〈M (0)|c j〉 (3.4)

and
H(1)

i j =
1
4

1
〈ci|ci〉〈c j|c j〉

[
〈ci|M (1)〉〈M (0)|c j〉+ 〈ci|M (0)〉〈M (1)|c j〉

]
, (3.5)

respectively. It is important to observe that both formulas (3.2) and (3.3) are written in terms of the
products 〈ci|c j〉 of elements of the color matrix. Therefore, if we want to isolate one specific color
contribution to the LO and NLO amplitudes as required by the evaluation of the hard functions, we
can simply set to zero all elements 〈ci|c j〉 but one and then loop over all possible elements.

For this purpose, GOSAM has been endowed with the new extension “hardfunction”. By
specifying this keyword in the GOSAM input card, together with the initial and final state particles
to be considered, the user can force the code to compute all different elements of the hard function
matrix by projecting on different elements of the color basis. All results are provided as complex
numbers. Afterwards, a change of basis can be performed according to the user’s choice. As an
output, GOSAM generates a FORTRAN routine that allows, for each given phase space point, to
compute the corresponding hard functions at LO and NLO.

4. Phenomenological motivation and applications

The machinery discussed in Sections 2 and 3 was recently applied to study the associated
production of a top quark pair and a boson (Higgs, W , or Z) at next-to-next-to-leading logarithmic
(NNLL) accuracy [3–6]. Precise theoretical predictions for these processes have indeed a wide
variety of phenomenological applications.

The associated production of a top pair and a Z or W boson (pp→ tt̄W and pp→ tt̄Z) are
the two processes with the heaviest final states so far observed observed at the LHC. The study
of pp→ tt̄Z provides direct access to the coupling of the top quark to the carriers of the weak
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interaction. This would allow to distinguish the Standard Model (SM) prediction respect to several
New Physics scenarios, that predict changes to this coupling with respect to the SM. The process
pp→ tt̄W , after considering the decay of the top quark, can lead to events with two leptons of the
same sign in the final state, in combination with jets and missing energy. These events, relatively
rare in the SM, are useful within supersymmetry searches. Moreover, both pp→ tt̄W and pp→ tt̄Z
are relevant in the context of dark matter searches.

The search for events in which a Higgs boson is produced in association with a top-antitop
quark pair (pp→ tt̄H production) is one experimental goals of Run II of the LHC. While the Stan-
dard Model cross section for this process is quite small, its measurement would indeed provide
important and direct information on the Yukawa coupling of the Higgs boson to the top quark,
which is crucial for verifying the origin of fermion masses, and understanding the hierarchy prob-
lem related to the mass of the Higgs boson. Moreover, its precise measurement would place strict
constraints on New Physics searches.

As an example of phenomenological application, in Figure 1 we present a comparison of the
predictions for the total cross sections of pp→ tt̄W and pp→ tt̄Z [6] at NLO and NLO+NNLL,
with the corresponding experimental data for the LHC at 13 TeV [24] which were recently released
by the CMS Collaboration.

SM theory vs CMS data
LHC 13 TeV

400 600 800 1000 1200 1400

600

800

1000

1200

1400

σttW [fb]

σ
ttZ

[fb
]

Figure 1: Total cross section at NLO (green cross) and NLO+NNLL (red cross) compared to the CMS
measurements at 13 TeV [24] (blue and pink bands).

A previous version of this comparison, based on earlier data from ATLAS measurements at
8 TeV [25] and to the CMS measurements at 13 TeV [26], showed that theoretical predictions for
the tt̄W cross section were somehow smaller than measurements for both collider energies [6].
With the present data, the discrepancy has decreased well below the 2σ limit. Of course, a fully
exhaustive comparison between predictions and measurements should also account for the uncer-
tainty associated to the choice of the PDFs and to the value of αs, which are not reflected in the
error bars of Figure 1.

The results were obtained by means of an in-house parton level Monte Carlo code for the
numerical evaluation of the resummation formula and matched to complete NLO calculations em-
ploying MadGraph5_aMC@NLO [27]. The NLO hard function have been computed with the
one-loop provider Openloops [28] in combination with Collier [29] and cross-checked with
GoSam [1, 2] used in combination with the reduction provided by Ninja [14–16].
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5. Future Outlook: towards a new approach to higher order calculations

As anticipated in the introduction, we recently witnessed several interesting developments
related to the mathematical properties of scattering amplitudes [30], which apply far beyond the
well-known limit of one-loop calculations. Integrand reduction, revisited within the language of
algebraic geometry, and unitarity started to build again that constructive interference pattern which
led a few years back to revolutionary results for the one-loop case. While very few actual calcu-
lations appeared in the literature, an example being the two-loop four gluons amplitudes obtained
with numerical unitarity method [31, 32], we expect these new approaches to play an increasingly
important role in the forthcoming months.

The idea of applying the integrand reduction beyond one loop, pioneered in [33, 34], has
been the target of several studies in the past five years, thus providing a new promising direction
in the study of multi-loop amplitudes. An important upgrade in this process was achieved by
systematizing the determination of the residues at the multiple poles of scattering amplitudes as a
problem of multivariate polynomial division in algebraic geometry [35–37], which turned out to be
a very natural language to describe the integrand-level decomposition. This approach confirms that
the shape of the residues is uniquely determined by the on-shell conditions, without any additional
constraint.

The Maximum Cut Theorem [36] guarantees that one of the pillars of integrand reduction,
namely the construction and evaluation of all residues on the kinematic cuts, is well grounded.
After labeling as Maximum-cuts the largest sets of denominators which can be simultaneously set
to zero for a given number of loop momenta, the Maximum Cut Theorem ensures that the corre-
sponding residues are parametrized by exactly ns coefficients, where ns is the number of solutions
of the multiple cut-conditions. This theorem extends to all orders the features of the one-loop
quadruple-cut in dimension four [17, 38].

In a different and very promising approach to integrand reduction, called Adaptive Integrand
Decomposition [39], non-physical degrees of freedom are integrated out by means of orthogonal-
ity relations, thus eliminating spurious integrals and leading to much simpler expressions for the
integrand-decomposition formulae.

While many computer algebra systems use finite fields for solving problems such as polyno-
mial factorization, the application of finite fields in high-energy physics is very recent [40–42].
Multivariate polynomials and rational functions, which commonly appear in the techniques men-
tioned above, can indeed be analytically reconstructed from their numerical evaluation at several
values of its arguments, and finite field provide an extremely efficient way of achieving this goal.

The GOSAM framework was developed to compute one-loop virtual contributions, as needed
by NLO phenomenology. However, thanks to its modular structure, it can be extended to address
specific tasks needed by higher order calculations: for example, to produce expressions for the
two-loop Feynman diagrams contributing to any given process. This feature has been successfully
employed to compute the two-loop virtual amplitudes for Higgs boson pair production in gluon
fusion [43–45].

To summarize, plenty of activities are currently in progress beyond one-loop. Traditional tools
for IBP-based approaches have been upgraded with smarter techniques (finite fields reconstruc-
tion). Further improvements have been achieved in the analytic and numerical evaluation of Master
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Integrals. Algebraic geometry provided a new handle to understand the structure of mathematical
objects which appear in these calculations. Unitarity at higher loops is under development. Overall,
it’s a time of theoretical improvements and mathematical explorations, which will naturally lead to
alternative approaches for advanced multi-loop calculations.

Acknowledgments The research of A.B. is supported by the DFG cluster of excellence “Origin and
Structure of the Universe”. N.G. was supported by the Swiss National Science Foundation under contract
PZ00P2_154829. The work of A.F. and G.O. is supported in part by the National Science Foundation under
Grant No. PHY-1417354.

References

[1] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola et al., Automated One-Loop
Calculations with GoSam, Eur. Phys. J. C72 (2012) 1889, [1111.2034].

[2] G. Cullen et al., GOSAM-2.0: a tool for automated one-loop calculations within the Standard Model
and beyond, Eur. Phys. J. C74 (2014) 3001, [1404.7096].

[3] A. Broggio, A. Ferroglia, B. D. Pecjak, A. Signer and L. L. Yang, Associated production of a top pair
and a Higgs boson beyond NLO, JHEP 03 (2016) 124, [1510.01914].

[4] A. Broggio, A. Ferroglia, G. Ossola and B. D. Pecjak, Associated production of a top pair and a W
boson at next-to-next-to-leading logarithmic accuracy, JHEP 09 (2016) 089, [1607.05303].

[5] A. Broggio, A. Ferroglia, B. D. Pecjak and L. L. Yang, NNLL resummation for the associated
production of a top pair and a Higgs boson at the LHC, JHEP 02 (2017) 126, [1611.00049].

[6] A. Broggio, A. Ferroglia, G. Ossola, B. D. Pecjak and R. D. Sameshima, Associated production of a
top pair and a Z boson at the LHC to NNLL accuracy, JHEP 04 (2017) 105, [1702.00800].

[7] T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, vol. 896.
Springer, 2015, 10.1007/978-3-319-14848-9.

[8] A. Ferroglia, M. Neubert, B. D. Pecjak and L. L. Yang, Two-loop divergences of scattering amplitudes
with massive partons, Phys. Rev. Lett. 103 (2009) 201601, [0907.4791].

[9] A. Ferroglia, M. Neubert, B. D. Pecjak and L. L. Yang, Two-loop divergences of massive scattering
amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062, [0908.3676].

[10] P. Nogueira, Automatic Feynman graph generation, J.Comput.Phys. 105 (1993) 279–289.

[11] J. A. M. Vermaseren, New features of FORM, math-ph/0010025.

[12] T. Reiter, Optimising Code Generation with haggies, Comput.Phys.Commun. 181 (2010) 1301–1331,
[0907.3714].

[13] G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: A Form Library for Helicity Spinors,
Comput.Phys.Commun. 182 (2011) 2368–2387, [1008.0803].

[14] P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes
through Laurent series expansion, JHEP 06 (2012) 095, [1203.0291].

[15] H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multi-leg One-loop
Massive Amplitudes from Integrand Reduction via Laurent Expansion, JHEP 03 (2014) 115,
[1312.6678].

6

http://dx.doi.org/10.1140/epjc/s10052-012-1889-1
http://arxiv.org/abs/1111.2034
http://dx.doi.org/10.1140/epjc/s10052-014-3001-5
http://arxiv.org/abs/1404.7096
http://dx.doi.org/10.1007/JHEP03(2016)124
http://arxiv.org/abs/1510.01914
http://dx.doi.org/10.1007/JHEP09(2016)089
http://arxiv.org/abs/1607.05303
http://dx.doi.org/10.1007/JHEP02(2017)126
http://arxiv.org/abs/1611.00049
http://dx.doi.org/10.1007/JHEP04(2017)105
http://arxiv.org/abs/1702.00800
http://dx.doi.org/10.1007/978-3-319-14848-9
http://dx.doi.org/10.1103/PhysRevLett.103.201601
http://arxiv.org/abs/0907.4791
http://dx.doi.org/10.1088/1126-6708/2009/11/062
http://arxiv.org/abs/0908.3676
http://dx.doi.org/10.1006/jcph.1993.1074
http://arxiv.org/abs/math-ph/0010025
http://dx.doi.org/10.1016/j.cpc.2010.01.012
http://arxiv.org/abs/0907.3714
http://dx.doi.org/10.1016/j.cpc.2011.06.007
http://arxiv.org/abs/1008.0803
http://dx.doi.org/10.1007/JHEP11(2012)128, 10.1007/JHEP06(2012)095
http://arxiv.org/abs/1203.0291
http://dx.doi.org/10.1007/JHEP03(2014)115
http://arxiv.org/abs/1312.6678


P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
3
9
2

Hard Functions at NLO with GOSAM Giovanni Ossola

[16] T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes,
Comput. Phys. Commun. 185 (2014) 2771–2797, [1403.1229].

[17] G. Ossola, C. G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at
the integrand level, Nucl. Phys. B763 (2007) 147–169, [hep-ph/0609007].

[18] P. Mastrolia, G. Ossola, C. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop
Amplitudes, JHEP 0806 (2008) 030, [0803.3964].

[19] G. Ossola, C. G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes,
JHEP 0805 (2008) 004, [0802.1876].

[20] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based
Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080, [1006.0710].

[21] T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: A Numerical program to
calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009)
2317–2330, [0810.0992].

[22] G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial Reconstruction at the Integrand Level,
JHEP 1010 (2010) 105, [1008.2441].

[23] J. P. Guillet, G. Heinrich and J. F. von Soden-Fraunhofen, Tools for NLO automation: extension of the
golem95C integral library, Comput. Phys. Commun. 185 (2014) 1828–1834, [1312.3887].

[24] CMS collaboration, C. Collaboration, Measurement of top pair-production in association with a W or
Z boson in pp collisions at 13 TeV, CMS-PAS-TOP-17-005 (2017) .

[25] ATLAS collaboration, G. Aad et al., Measurement of the ttW and ttZ production cross sections in pp
collisions at

√
s = 8 TeV with the ATLAS detector, JHEP 11 (2015) 172, [1509.05276].

[26] CMS collaboration, C. Collaboration, Measurement of the top pair-production in association with a
W or Z boson in pp collisions at 13 TeV, CMS-PAS-TOP-16-017 (2016) .

[27] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated
computation of tree-level and next-to-leading order differential cross sections, and their matching to
parton shower simulations, JHEP 07 (2014) 079, [1405.0301].

[28] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett.
108 (2012) 111601, [1111.5206].

[29] A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in
Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220–238, [1604.06792].

[30] Y. Zhang, Lecture Notes on Multi-loop Integral Reduction and Applied Algebraic Geometry, 2016.
1612.02249.

[31] H. Ita, Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys. Rev. D94
(2016) 116015, [1510.05626].

[32] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-Loop Four-Gluon
Amplitudes with the Numerical Unitarity Method, 1703.05273.

[33] P. Mastrolia and G. Ossola, On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes,
JHEP 1111 (2011) 014, [1107.6041].

[34] S. Badger, H. Frellesvig and Y. Zhang, Hepta-Cuts of Two-Loop Scattering Amplitudes, JHEP 1204
(2012) 055, [1202.2019].

7

http://dx.doi.org/10.1016/j.cpc.2014.06.017
http://arxiv.org/abs/1403.1229
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.012
http://arxiv.org/abs/hep-ph/0609007
http://dx.doi.org/10.1088/1126-6708/2008/06/030
http://arxiv.org/abs/0803.3964
http://dx.doi.org/10.1088/1126-6708/2008/05/004
http://arxiv.org/abs/0802.1876
http://dx.doi.org/10.1007/JHEP08(2010)080
http://arxiv.org/abs/1006.0710
http://dx.doi.org/10.1016/j.cpc.2009.06.024
http://dx.doi.org/10.1016/j.cpc.2009.06.024
http://arxiv.org/abs/0810.0992
http://dx.doi.org/10.1007/JHEP10(2010)105
http://arxiv.org/abs/1008.2441
http://dx.doi.org/10.1016/j.cpc.2014.03.009
http://arxiv.org/abs/1312.3887
http://dx.doi.org/10.1007/JHEP11(2015)172
http://arxiv.org/abs/1509.05276
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1103/PhysRevLett.108.111601
http://dx.doi.org/10.1103/PhysRevLett.108.111601
http://arxiv.org/abs/1111.5206
http://dx.doi.org/10.1016/j.cpc.2016.10.013
http://arxiv.org/abs/1604.06792
http://arxiv.org/abs/1612.02249
http://dx.doi.org/10.1103/PhysRevD.94.116015
http://dx.doi.org/10.1103/PhysRevD.94.116015
http://arxiv.org/abs/1510.05626
http://arxiv.org/abs/1703.05273
http://dx.doi.org/10.1007/JHEP11(2011)014
http://arxiv.org/abs/1107.6041
http://dx.doi.org/10.1007/JHEP04(2012)055
http://dx.doi.org/10.1007/JHEP04(2012)055
http://arxiv.org/abs/1202.2019


P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
3
9
2

Hard Functions at NLO with GOSAM Giovanni Ossola

[35] Y. Zhang, Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic Geometry
Methods, JHEP 1209 (2012) 042, [1205.5707].

[36] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering Amplitudes from Multivariate
Polynomial Division, Phys.Lett. B718 (2012) 173–177, [1205.7087].

[37] P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multiloop Integrand Reduction for Dimensionally
Regulated Amplitudes, Phys.Lett. B727 (2013) 532–535, [1307.5832].

[38] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4
super-Yang-Mills, Nucl. Phys. B725 (2005) 275–305, [hep-th/0412103].

[39] P. Mastrolia, T. Peraro and A. Primo, Adaptive Integrand Decomposition in parallel and orthogonal
space, JHEP 08 (2016) 164, [1605.03157].

[40] A. von Manteuffel and R. M. Schabinger, A novel approach to integration by parts reduction, Phys.
Lett. B744 (2015) 101–104, [1406.4513].

[41] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP 12
(2016) 030, [1608.01902].

[42] P. Maierhoefer, J. Usovitsch and P. Uwer, Kira - A Feynman Integral Reduction Program,
1705.05610.

[43] S. Borowka, N. Greiner, G. Heinrich, S. Jones, M. Kerner, J. Schlenk et al., Higgs Boson Pair
Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys.
Rev. Lett. 117 (2016) 012001, [1604.06447].

[44] S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk et al., Full top quark mass
dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107, [1608.04798].

[45] G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni and E. Vryonidou, NLO predictions for Higgs boson
pair production with full top quark mass dependence matched to parton showers, JHEP 08 (2017)
088, [1703.09252].

8

http://dx.doi.org/10.1007/JHEP09(2012)042
http://arxiv.org/abs/1205.5707
http://dx.doi.org/10.1016/j.physletb.2012.09.053
http://arxiv.org/abs/1205.7087
http://dx.doi.org/10.1016/j.physletb.2013.10.066
http://arxiv.org/abs/1307.5832
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.014
http://arxiv.org/abs/hep-th/0412103
http://dx.doi.org/10.1007/JHEP08(2016)164
http://arxiv.org/abs/1605.03157
http://dx.doi.org/10.1016/j.physletb.2015.03.029
http://dx.doi.org/10.1016/j.physletb.2015.03.029
http://arxiv.org/abs/1406.4513
http://dx.doi.org/10.1007/JHEP12(2016)030
http://dx.doi.org/10.1007/JHEP12(2016)030
http://arxiv.org/abs/1608.01902
http://arxiv.org/abs/1705.05610
http://dx.doi.org/10.1103/PhysRevLett.117.012001
http://dx.doi.org/10.1103/PhysRevLett.117.012001
http://arxiv.org/abs/1604.06447
http://dx.doi.org/10.1007/JHEP10(2016)107
http://arxiv.org/abs/1608.04798
http://dx.doi.org/10.1007/JHEP08(2017)088
http://dx.doi.org/10.1007/JHEP08(2017)088
http://arxiv.org/abs/1703.09252

