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The identification of jets containing bottom or charm hadrons is crucial to the LHC physics pro-
gram. Top-quark decays proceed almost exclusively through a b-quark. The Standard Model
Higgs boson decays predominantly to bb̄ pairs. Several scenarios of new physics result in an
enhanced production of fermions of the third generation, such as models with an extended Higgs
sector or scalar top and bottom quark production in Supersymmetry. These physics scenarios cor-
respond to very different environments for performing the identification of jets with heavy flavour
hadrons of very different kinematics. This justifies a special effort in the identification of b- and
c-jets with the ATLAS detector [1] over a broad kinematical range.
Flavour tagging is based on the reconstructed trajectories of particle tracks and their extrapolation
to the colliding beam envelope. The introduction of the ATLAS IBL pixel layer located at a radial
distance of 3.3 cm from the interaction region with a 10 µm hit spatial resolution in Run 2 [2]
resulted in an improvement of the track extrapolation resolution by a factor up to 2 at low values
of the track transverse momentum, pT. The adoption of a stochastic model of energy deposition in
Si pixels [3] and of a more realistic description of the material in the ATLAS inner detector system
in the 2017 software configuration improved the data/MC agreement for the track extrapolation
resolution and the response of track-based taggers.
Improvements and innovations in physics taggers, new approaches to multivariate analysis and
training samples have brought optimised and more performant flavour-tagging algorithms for the
analysis of the 2017 LHC collision data with ATLAS. This contribution summarises these recent
developments. More details on jet flavour tagging in ATLAS and its performance in the 2017
configuration can be found in [4, 5].
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1. Physics Taggers

Flavour tagging in ATLAS is performed by combining the response of track-, particle- and
vertex-based physics taggers [4, 5]. The algorithmic improvements to track-based taggers include
the use of a Recurrent Neural Network algorithm that processes tracks exploiting spatial and kine-
matic correlations without reliance on secondary vertex finding (RNNIP). This uses the information
from the track-by-track correlations within a jet, providing superior and complementary tagging
capability. Its use results in a gain of up to a factor of 2.5 in light-jet rejection at 70% b-jet effi-
ciency compared to the simpler impact parameter-based IP2D and IP3D taggers [6]. The impact
parameter-based (IP2D and IP3D) taggers remain complementary to the RNN performance, in
particular for b-jets with low b-hadron charged decay multiplicity.

The introduction of a particle-based, soft muon tagger (SMT), identifying muons from semilep-
tonic decays of b-hadrons offers an alternate tagger for jets with semileptonic decays, having re-
duced performance of the secondary vertex-based taggers. This dedicated tagger combines a set
of variables to identify muons in jets and discriminate their primary or secondary origin through a
BDT discriminant (see Figure 1) [5, 7]. The typical muon identifiction efficiency in b-jets is 65%
for a 1.8% pion misidentification probability. This results in a tag efficiency of b-jets of∼10% with
a light-jet mistag probability of just 0.2%. The adoption of the SMT tagger reduces the drop in b-
tagging efficiency of the high-level discriminants for b-jets containing muons from the b-hadron
decay chain.

Figure 1: Soft Muon Tagging: (Left) Event display of a tt̄ dilepton candidate event from pp collisions
recorded by ATLAS at

√
s=13 TeV with a soft (7 GeV) muon associated to a b-jet candidate tagged by

the new SMT tagger. The light blue lines reaching the Muon Spectrometer (MS) show the path of the two
combined muons. (Right) Data-MC comparisons of the SMT BDT output for a tt̄-dominated eµ sample.
The contributions of b-, c- and light-jets in simulation are shown (from [5]).

Vertex-based taggers in ATLAS use both an inclusive secondary vertex approach (SV1) [8] and
a topological decay reconstruction (JetFitter) [9, 10]. In the first case, the algorithm starts from two-
track vertices reconstructed using tracks fulfilling strict quality criteria, drops those consistent with
K0

S or Λ0 decays and material interactions and merges the selected vertices into a single inclusive
secondary vertex. The topological JetFitter algorithm reconstructs the heavy hadron decay chain by
applying a modified Kalman Filter formalism, where the distance from the track crossing with jet
axis replaces that from the vertex position in the minimisation process. This procedure reconstructs
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the secondary and tertiary vertex in the decay chain, including those with single prongs. The
two vertexing algorithms are complementary in their efficiency, with up to 15% of reconstructed
vertices in b-jets found by only one of the two methods. The topological reconstruction of b-
hadron decays is particularly useful to efficiently and cleanly separate b- from c- and light-jets.
Detailed information on the reconstructed topology and kinematics of detached vertices offers clear
advantages in the rejection of non-b jets, with gains of order of a factor of 2 compared to the use
of more inclusive decay properties. The distribution of the invariant mass of reconstructed for
jets with a single reconstructed vertex and the full topology of secondary and tertiary vertices, of
Figure 2 highlights the purity achievable in b-jets in this category at sufficiently large values of the
vertex mass.

Figure 2: Invariant mass of tracks associated to detached vertices reconstructed by the JetFitter topological
vertex reconstruction algorithm in a subset of 2016 collision data and simulated tt̄ and Wt events for jets
with single reconstructed vertex (left), and for secondary (center) and tertiary vertices (right) in jets with two
reconstructed vertices. The contributions of b-, c- and light-jets in simulation are shown.

In addition, the topological and kinematical properties of decay products originating at a single
displaced secondary vertex reconstructed by JetFitter, are exploited for a dedicated high-level c-jet
discriminant, for use in analyses such as H0→ cc̄ searches.

2. High-level Discriminants and Training

High-level discriminants combine the inputs from track-, particle- and vertex-based physics
taggers using multivariate classifiers to maximise the b-tagging performance. The 2017 ATLAS
configuration adopts two classes of high-level taggers: a BDT discriminant (MV2), an evolution of
that adopted in 2016 [11], and the first evaluation of a Deep Learning Neural Network discriminant
(DL1). Both discriminants have been trained on three sets of variables: i) the variables related to
the track-based impact parameter and the vertex-based physics taggers already used in 2016 [11],
ii) those with the addition of the particle-based SMT BDT and iii) those with the further addition
of the RNNIP track-based tagger.

The relation between the pT and energy of the jet to those of the original b-quark and hadron
is key for understanding the flavour tagging response as a function of the jet pT. In tt̄ events, used
in the past for the training of the high-level discriminants, b-jets originate from the relatively low-
mass top quark. This results in small pT transferred to the heavy b-hadron and leads to a correlation
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between jet pT and heavy hadron pT only for pT . mt . For jet pT & mt , the jet transverse momen-
tum is determined by nearby hadronic activity unrelated to the heavy hadron and the correlation
is therefore reduced. Instead, b-hadrons produced in the decays of massive particles, such as Z′

decays, have a high degree of correlation between the hadron pT and the jet pT up to large values.
In order to include both these regimes in the training of the discriminants, a new hybrid sample has
been introduced. The sample is made of tt̄ events, to characterise the b-hadron pT region below
250 GeV, and decays of a broad Z′ resonance, to probe the high pT regime [12].

The development of the discriminant based on the Deep Learning architecture is motivated by
the interest in assessing whether this architecture might be better suited to exploit input correlations
than a BDT [13]. At present, the performance observed for the DL and BDT discriminants is found
to be very similar and these algorithms are also found to tag a highly correlated sample of jets,
when trained on the same input variables. In future, DL1 may provide specific advantages when
combining large sets of correlated variables, enable an higher degree of integration of low-level and
high-level taggers and the adoption of new training procedures to mitigate the impact of modelling
systematics.

3. Performance, Data/MC Response and Calibration

The performance of the MV2 discriminants in terms of light- and c-jet rejection for constant
77% b-jet efficiency as a function of the jet pT is summarised in Figure 3, comparing to the results
obtained for the MV2c10 discriminant in the 2016 configuration [11], and the light-jet rejection is
evaluated as a function of the b-jet efficiency in Figure 4. The MV2 taggers trained on the hybrid
sample achieve a performance similar to those trained on the tt̄ sample for jet pT values below
250 GeV but they outperform the tt̄ training by a factor of more than 2 at 77% b-jet efficiency
for pT > 250 GeV. The addition of the SMT information in the MV2Mu discriminant improves

Figure 3: Light-flavour (a) and c-jet (b) rejection as a function of the jet pT for MV2c10 in the 2016
configuration (brown markers), MV2 (black markers) in the 2017 configuration, MV2Mu (red markers) and
MV2MuRnn (blue markers). The algorithm evaluation is performed on Z′ events for a flat b-jet efficiency of
77% for each pT bin. The ratio is calculated with respect to the 2016 configuration (from [5]).

the light-jet rejection in the low-to-medium jet pT range. The MV2MuRnn setup provides further

3



P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
4
8
0

Flavour Tagging at ATLAS Marco Battaglia

improvements in light- and c-jet rejection, in particular in the high-pT region where the use of the
RNNIP tagger is most effective.

Figure 4: High-level MV2 discriminant: (left) Light-flavour rejection as a function of b-jet efficiency for
MV2 (black line), MV2Mu (red line) and MV2MuRnn (blue line). The algorithm evaluation is performed on
tt̄ events. The ratio on the lower panel of the figure is obtained for each MV2 variant (MV2Mu, MV2MuRnn)
with respect to MV2. (right) Data-MC comparison of the response of the MV2MuRNN b-tagging algorithm
using a selected tt̄-dominated eµ sample. The contributions of b-, c- and light-jets in simulation are shown
(from [5]).

In addition to the improvements in the algorithms employed, the optimisation of the flavour
tagging response has included detailed comparisons of 2016 collision data and Monte Carlo simu-
lation from track variables to physics tagger observables and high-level discriminant response for
event samples enriched and depleted in b-jets (see Figure 4).

The stability of the baseline MV2 discriminant efficiency on physics signal samples of differ-
ent kinematics, t̃ and b̃ pair production and V H, H → bb̄, has been verified. In particular, in the
associated production of the Higgs boson with vector boson (V H) at mH=125 GeV, signal b-jets
produced in the H → bb̄ decay and background Z + jets and W + jets events, without b-jets, have
been considered. After event selection, the ratio of the selected b-jets in the V H signal sample to
those measured in the hybrid sample is found to be 1.03±0.02 (stat.) inclusively in pT, for the
MV2MuRnn discriminant at a working point corresponding to 77% efficiency. The misidentifi-
cation probability of c- and light-flavour jets in Z + jets and W + jets events fulfilling the same
selection as the signal sample are found to be compatible to those observed in the hybrid sample in
the same pT range, for both c- and light-flavour jets.

It is essential not only to obtain a performant high-level discriminant, but also one with well-
understood performance and small sensitivity to decay modelling systematics. The sensitivity to
pile-up conditions and modelling of b-production and decay have been characterised [5]. A de-
tailed calibration of the performance of the discriminants is performed comparing the response on
simulated and real data and computing appropriate MC scaling factors as a function of the jet pT

and η . The data-to-MC scale factors extracted in the calibration are used as corrections to the sim-
ulation for analyses relying on jet flavour tagging. The results summarised here, obtained for the
MV2c10 BDT discriminant in the 2016 ATLAS configuration [11], are exemplificative of the level
of accuracy achieved in the flavour tagging calibration.
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The b-jet tagging efficiency is extracted using a tag-and-probe (T&P) [14] and a combinatorial
likelihood [15] technique for tt̄ di-lepton events. The three main parameters influencing the flavour
tagging performance are the jet pT and η and the overlap between the b-parton and additional
hadronic activity (see Figure 5). This additional hadronic activity may be due to a nearby hadronic
jet, at low to intermediate jet pT values, or gluon radiation within the jet, more notable for high pT

jets. The observed MC scaling factors are typically ≤ 5%.

Figure 5: b-tagging efficiency for the MV2 algorithm at 77% efficiency working point as a function of the
jet pT (left), |η | (center) and ∆R to the closest jet (right) obtained selecting tt̄ single-lepton events. The red
line shows the b-tagging efficiency predicted by simulation and the black dots the values measured in data
with a T&P method. The vertical error bars indicate the statistical uncertainty on the measurement. The
green band indicates the total statistical and systematic uncertainties.

The mis-identification of light-jets is due to several sources including: resolution effects, ma-
terial interactions and long-lived particles. An accurate material mapping performed using recon-
structed hadronic interaction vertices provides more reliable modelling of the material responsible
for hadronic interaction [16].

The effect of the track extrapolation resolution can be estimated by studying simulation ad-
justed to reproduce the measured impact parameter and taggers fed with tracks with negative
lifetime-signed impact parameters [17]. Results for the negative tag measurements, including
simulation-based corrections for heavy flavour jet contamination and light-flavour jets with true
secondary vertices, are shown in Figure 6.

Figure 6: Light-flavour mistag rate (left) and ratio (right) between the light-flavour mistag rate measured
from data and that from simulation for the 77% b-efficiency working point as a function of the jet pT,
measured by the negative tag method compared to simulation predictions. The statistical uncertainty is the
quadratic sum of data and MC statistical uncertainties.

Finally, the effects of uncertainties in b-modelling on the predicted b-jet efficiency are found
to be small compared to the typical uncertainties of calibration analyses in flavour-enriched control
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regions.

References

[1] ATLAS Collaboration, JINST 3 (2008) S08003.

[2] ATLAS Collaboration, CERN-LHCC-2010-013, ATLAS-TDR-19.

[3] H. Bichsel, Rev. Mod. Phys. 60 (1988) 663.

[4] ATLAS Collaboration, JINST 11 (2016) no.04, P04008 [arXiv:1512.01094 [hep-ex]].

[5] ATLAS Collaboration, Note ATL-PHYS-PUB-2017-013.

[6] ATLAS Collaboration, Note ATL-PHYS-PUB-2017-003.

[7] A. Sciandra, in these proceedings.

[8] ATLAS Collaboration, Note ATL-PHYS-PUB-2017-011.

[9] G. Piacquadio and C. Weiser, J. Phys. Conf. Ser. 119 (2008) 032032.

[10] G. Gilles, in these proceedings.

[11] ATLAS Collaboration, Note ATL-PHYS-PUB-2016-012.

[12] F. Di Bello, in these proceedings.

[13] M. Lanfermann, in these proceedings.

[14] ATLAS Collaboration, Note ATLAS-CONF-2016-001.

[15] ATLAS Collaboration, Note ATLAS-CONF-2014-004.

[16] ATLAS Collaboration, JINST 11 (2016) no.11, P11020 [arXiv:1609.04305 [hep-ex]].

[17] ATLAS Collaboration, Note ATLAS-CONF-2014-046.

6


