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1. Introduction

Asymptotic safety states that fundamental quantum fields may remain interacting (rather than
a free) at highest energies [1, 2], implying that running couplings reach an interacting ultravio-
let (UV) fixed point under the renormalization group evolution. Asymptotic safety has initially
been proposed as a scenario for quantum gravity [2]. More recently, necessary and sufficient con-
ditions for asymptotic safety in general 4-dimensional weakly coupled gauge theories have been
derived [3, 4]. Most importantly, it was found that Yukawa interactions together with elemen-
tary scalar fields such as the Higgs are crucial to tame the high-energy behavior of the running
couplings. The feasibility of asymptotic safety is thus well motivated theoretically and opens in-
triguing new directions for model building beyond the Standard Model (BSM).

In these proceedings we report on the results presented in details in [5]. Our goal is to under-
stand whether and how minimal extensions of the SM can be found with weakly interacting UV
fixed points. Our central new input are BSM fermions and scalars, some of which are charged
under the gauge symmetries of the SM. We are particularly interested in the concrete conditions
under which interacting UV fixed points are connected through well-defined trajectories with the
SM at low energies.

2. Basics of asymptotic safety

To illustrate the mechanism of asymptotic safety, we consider the renormalization group (RG)
flow for a simple gauge theory with a gauge coupling αg = g2/(4π)2. The theory encompasses
also scalars and fermions with Yukawa interactions described by a coupling αy = y2/(4π)2. Within
perturbation theory, the RG flow in the gauge-Yukawa system is given, to the leading non-trivial
order, by

βg ≡
dαg

d ln µ
= (−B+C αg−Dαy)α

2
g ,

βy ≡
dαy

d ln µ
= (E αy−F αg)αy .

(2.1)

The gauge coupling is asymptotically free (infrared free) provided that the one loop gauge coeffi-
cient obeys B > 0 (B < 0). The two loop gauge coefficient C may take either sign depending on
the matter content. The other loop coefficients obey D,E,F > 0 for any quantum field theory.

In general, theories with Eq. (2.1) may have various types of fixed points, depending on the
matter content. Equating βi = 0 for both couplings, three types of fixed points are found. The
Gaussian fixed point (α∗g ,α

∗
y ) = (0,0) always exists, and corresponds to the UV (IR) fixed point

provided that B > 0 (B < 0). An interacting fixed point where Yukawa interactions are switched-
off may also exist, with (α∗g ,α

∗
y ) =

(B
C ,0

)
. This is the well-known Caswell–Banks-Zaks fixed

point [6, 7] which requires B ·C > 0 to be physical and B/C� 1 to be perturbative. Finally, a
fully interacting gauge-Yukawa fixed point may arise provided that the Yukawa coupling is non-
vanishing, (α∗g ,α

∗
y ) =

( B
C′ ,

B
C′

F
E

)
, where C′ = C−D F

E . For theories without asymptotic freedom
(B < 0) the gauge coupling may now take a viable interacting fixed point α∗g = B/C′ > 0 as long
as C′ < 0. This is the interacting UV fixed point of asymptotic safety.
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3. Asymptotically safe extensions of the Standard Model

Asymptotic safety in the extensions of the SM requires the presence of new matter fields
which carry charges under the SM gauge groups and thereby modify the RG running of the cou-
plings. Guided by the findings of [3, 4], we consider the existence of NF flavors of BSM vector-like
fermions ψ which minimally couple to the SM gauge bosons. In general, the BSM fermions may
carry charges under SU(3)C, SU(2)L, or hypercharge Y , meaning

ψi(R3,R2,Y ) , (3.1)

where i = 1, · · · ,NF denotes the flavor index. They couple via Yukawa interactions to complex
scalar fields Si j which we assume to be singlets under the SM. Since the BSM fermions are taken
to be vector-like, gauge anomalies are not an issue. The Yukawa interactions are given by

LBSM,Yukawa =−yTr(ψL SψR +ψR S†
ψL) . (3.2)

Here, y denotes the BSM Yukawa coupling, the trace Tr sums over color and flavor indices, and the
decomposition ψ = ψL +ψR with ψR/L = 1

2(1± γ5)ψ is understood. We neglect at this point the
role of quartic self interactions of the BSM scalars, as well as their portal couplings to the Higgs
boson. The reason is that, at weak coupling, neither of these are relevant for the primary existence
of the UV fixed point in the gauge-Yukawa sector.

Firstly, we limit ourselves to BSM fermions which carry no hypercharge. Consequently, the
free fundamental parameters of the BSM matter sector are given by their group-theoretical rep-
resentation under SU(2)L and SU(3)C, and their flavor multiplicity NF . The corresponding RG
equations to the leading non-trivial order are given by [8, 9, 10]

β3 ≡
dα3

d ln µ
= (−B3 +C3 α3 +G3 α2−D3 αy)α

2
3 ,

β2 ≡
dα2

d ln µ
= (−B2 +C2 α2 +G2 α3−D2 αy)α

2
2 , (3.3)

βy ≡
dαy

d ln µ
= (E αy−F2 α2−F3 α3)αy ,

where the loop coefficients depend on R2, R3 and NF . Gauge-Yukawa theories with Eq. (3.3) may
display up to four different types of weakly coupled UV fixed points, depending on whether the
gauge couplings take free or interacting values in the UV. They are summarized in Table 1.

The existence of a UV fixed point depends on the number of the BSM fermions NF and their
transformation properties under SU(3)C⊗ SU(2)L. For example, for a partially interacting fixed
point FP3, a minimal requirement to make it a UV fixed point is the loss of asymptotic freedom
in the SU(3)C gauge sector, B3 < 0, translating into a lower bound on the number of the BSM
fermions, NF > 21/(4S2(R3)d(R2)). Furthermore, the physicality condition of the couplings at the
fixed point translates into a condition D3 F3−E C3 > 0. In Table 2 we show the maximal number of
BSM vector-like fermions compatible with asymptotic freedom, NAF, for SU(2)L singlets, doublets
and triplets, and for different dimensions of the SU(3)C representations. Asymptotic freedom is
lost as soon as the BSM fermions transform under higher-dimensional representations of the gauge
group. We also show the smallest number of flavors required for an asymptotically safe fixed
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case gauge couplings BSM Yuk type info
FP1 α∗3 = 0 α∗2 = 0 α∗y = 0 G · G non-interacting

FP2 α∗3 = 0 α∗2 > 0 α∗y > 0 G · GY partially interacting

FP3 α∗3 > 0 α∗2 = 0 α∗y > 0 GY · G partially interacting

FP4 α∗3 > 0 α∗2 > 0 α∗y > 0 GY · GY fully interacting

Table 1: Four different types of UV fixed points FP1-FP4 in minimal BSM extensions of the SM with 3.3. We also
indicate how the fixed points can be interpreted as products of the Gaussian (G) and gauge-Yukawa (GY) fixed points
when viewed from the individual gauge group factors.

point FP3 to exists, NAS. For fermions in the fundamental representations, no asymptotically safe
solution is possible. For fermions in higher-dimensional representations, we find that a fixed point
exists for sufficiently large NF . The same is true for FP2, with interchange of the indices 2→ 3
and 3→ 2. For a fully interacting fixed point FP4 to exists, the BSM fermions must transform in a
representation higher than fundamental with respect to at least one of the symmetry groups.

In the vicinity of interacting fixed points, the running of couplings is power law like, char-
acterized by universal scaling exponents {ϑi}. Linearizing the RG flow in the vicinity of a fixed
point, βi = ∑ j Mi j (α j−α∗j )+ subleading, the scaling exponents can be derived as the eigenvalues
of the stability matrix Mi j = ∂βi/∂α j|∗. Eigendirections are termed relevant (irrelevant) provided
that ϑ < 0 (ϑ > 0). Marginal couplings have vanishing eigenvalues at linear order. Any RG tra-
jectory emanating from a UV fixed point qualifies as a UV complete quantum field theory. The
set of such UV-safe trajectories is called a critical surface and its dimensionality is determined by
the relevant and marginally relevant couplings in the UV. Conversely, the irrelevant couplings are
uniquely fixed in the UV by the relevant couplings. Consequently, the number of fundamentally
free parameters which characterize the UV-safe trajectories is given by the dimensionality of the
critical surface. At low energies, physically viable BSM trajectories must connect with those of the
SM, as soon as the BSM matter fields have decoupled.

At partially interacting fixed points, one of the two gauge couplings remains asymptotically
free, while the other one becomes asymptotically safe. Moreover, the asymptotically (free) safe
coupling is (marginally) relevant and the UV critical surface is invariably two-dimensional. On the

R2 = 1 R2 = 2 R2 = 3
R3 NAF NAS NAF NAS NAF NAS

3 10 – 6 – 3 –
6 2 37 1 77 – 116
8 1 95 – 198 – 299

10 – 17 – 34 – 51
15 – 30 – 60 – 90
15′ – 17 – 33 – 50

Table 2: Asymptotic freedom versus asymptotic safety at the partially interacting fixed point FP3. Shown are the
maximal numbers of BSM fermion flavors compatible with asymptotic freedom, NAF, and the smallest number of flavors
required for an asymptotically safe fixed point FP3 to exist, NAS, both in dependence on the fermion representations R2
and R3 under SU(2)L and SU(3)C, respectively. Perturbative couplings are assumed, 0 < α∗3 ,α

∗
y < 1.
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Figure 1: Matching of the UV interacting fixed points onto the SM. BSM (SM) running is shown by full (dashed)
lines. The matching and the cross-over scales are indicated as vertical dotted lines.

other hand, the BSM Yukawa coupling, αy, is irrelevant and fully specified by the asymptotically
safe coupling in the UV. A convenient choice for the two fundamentally free dimensionless param-
eters which characterize UV-safe trajectories running out of the fixed point are the deviations of the
gauge couplings from their UV fixed point values at some high scale. In the immediate vicinity of
the UV fixed point the RG flow is of the power-law type and thus fast, controlled by the relevant
scaling exponent. Further away from the fixed point, as soon as αAS ≈ 2/3α∗AS and below [11],
we observe a cross-over whereby the running becomes logarithmically slow instead, dominated by
the “would-be” Gaussian IR fixed point. Two examples of such a behavior are shown in Fig.1a
and Fig.1b for the fixed points FP2 and FP3, respectively. Note that the matching scale is a free
parameter and can be chosen arbitrarily.

All fully interacting UV fixed points FP4 are characterized by a stability matrix with a single
relevant eigenvalue. This result has important implications. Unlike in asymptotically free theories
(or in asymptotically safe theories with partially interacting fixed points) where every gauge cou-
pling corresponds to a UV relevant direction, here, instead, the UV critical surface is of a lower
dimensionality. As a consequence, the number of fundamentally independent parameters is re-
duced, leading to an enhanced level of predictivity. In our models, the UV critical surface at fully
interacting UV fixed points becomes one-dimensional, parametrized by a single free parameter.
Consequently, only one out of the three couplings (α3,α2,αy) may be considered as an indepen-
dent variable. Since the set of determining equations is over-constrained, a successful matching
cannot be guaranteed from the outset, meaning that the viability needs to be checked for each case.
In Fig.1c we present an example, in which the matching is possible at the high-energy scale.

Finally, we will shorty comment on a scenario in which the BSM fermions carry a non-zero
hypercharge [12]. In this case, two qualitatively different asymptotic types of behavior of the
U(1)Y gauge coupling can be observed. In any of the models considered above, there is always a
lower bound on the value of the hypercharge, above which α1 becomes asymptotically free. This is
illustrated in Fig.2a for a scenario with the fixed point FP2. Alternatively, one may assume that the
BSM fermions are singlets under the SU(3)C⊗SU(2)L gauge symmetry. In such a case, a minimal
value of hypercharge exists for which α1 becomes asymptotically safe. The RG running towards
this new type of a partially interacting UV fixed point, FPY, is shown in Fig.2b.
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Figure 2: Matching of the UV fixed points onto the SM. BSM (SM) running is shown by full (dashed) lines.

4. Conclusions

We investigated asymptotically safe extensions of the SM, constructed by adding new fermions
and scalar singlet fields. The new matter fields interact via a single Yukawa coupling to help
generate interacting UV fixed points. A large variety of stable high energy fixed points emerges
where either the strong, the weak, the hypercharge, or any two of the gauge couplings assume finite
values. Many of the fully interacting fixed points can also be matched onto the SM including at
TeV scales, leading to signatures that could be observed at the colliders. An intriguing feature of
models with fully interacting UV fixed points is a relation between gauge couplings, dictated by
asymptotic safety. The number of fundamentally free parameters is thereby reduced offering an
enhanced degree of predictivity compared to the SM, quite similar to the idea of unification.
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