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1. Freudenthal Duality

We start and consider the following Lagrangian density in four dimensions (cf. e.g. [1]):
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describing Einstein gravity coupled to Maxwell (Abelian) vector fields and to a non-linear sigma
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model of scalar fields (with no potential); note that .2 may -but does not necessarily need to -
be conceived as the bosonic sector of D = 4 (ungauged) supergravity theory. Out of the Abelian
two-form field strengths F’s, one can define their duals Gy, and construct a symplectic vector :

T, 0%
H:=(F*Ga)", GAW‘,::2W. (1.2)

We then consider the simplest solution of the equations of motion deriving from .#, namely a
static, spherically symmetric, asymptotically flat, dyonic extremal black hole with metric [2]

dt* 1 .
ds? = —e2V(D) gg2 4 p=2U(D) [14 + = (d92 +sin Gdlllz)] , (1.3)

where 7 := —1/r. Thus, the two-form field strengths and their duals can be fluxed on the two-
sphere at infinity S2 in such a background, respectively yielding the electric and magnetic charges
of the black hole itself, which can be arranged in a symplectic vector 2 :
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Then, by exploiting the symmetries of the background (1.3), the Lagrangian (1.1) can be
dimensionally reduced from D = 4 to D = 1, obtaining a 1-dimensional effective Lagrangian (' :=
d/dr) [3]:

L1 = (U') +8(0)9"¢" + ¢ Viu (9.2) (1.6)

along with the Hamiltonian constraint [3]
2 i
(U) +8ij(9) 9" 9" — Vi (9,2) = 0. (1.7)
The so-called “effective black hole potential" Vpy appearing in (1.6) and (1.7) is defined as [3]
1
Vo (9, 2) i= =524 (9) 2, (18)

in terms of the symplectic and symmetric matrix [1]
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where I denotes the identity, and R(¢) and I (¢) are the scalar-dependent matrices occurring in
(1.1); moreover, Q stands for the symplectic metric (> = —1I). Note that, regardless of the invert-
ibility of R (¢) and as a consequence of the physical consistence of the kinetic vector matrix 7 (¢),
A is negative-definite; thus, the effective black hole potential (1.8) is positive-definite.

By virtue of the matrix ., one can introduce a (scalar-dependent) anti-involution . in any
Maxwell-Einstein-scalar theory described by (1.1) with a symplectic structure €2, as follows :

L) : =Q(9); (1.11)
T2(Q) = QM (9) QM (9) =% = —T; (1.12)

in turn, this allows to define an anti-involution on the dyonic charge vector .2, which has been
called (scalar-dependent) Freudenthal duality [4, 5, 6]:

3(2:9) : =—7(9)2; (1.13)
3 =-L (V{o}). (1.14)

By recalling (1.8) and (1.11), the action of § on 2, defining the so-called (¢-dependent) Freuden-
thal dual of 2 itself, can be related to the symplectic gradient of the effective black hole potential

VBH .
8VBH ((P, o@)
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Through the attractor mechanism [7], all this enjoys an interesting physical interpretation when

5 (2;0)=Q (1.15)

evaluated at the (unique) event horizon of the extremal black hole (1.3) (denoted below by the
subscript “H"); indeed

IV = 0 lim_¢'(7) = ¢ (2); (1.16)
A T
Sor (2) = 7 = T Vattloyy—0 = —5 2" M (2) 2, (1.17)

where Spy and Ay respectively denote the Bekenstein-Hawking entropy [8] and the area of the
horizon of the extremal black hole, and the matrix horizon value .#} is defined as

My (2):= lim A (¢(1)). (1.18)
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Correspondingly, one can define the (scalar-independent) horizon Freudenthal duality §z as the
horizon limit of (1.13) :

) 1 _0Spn (2
D=Fu(2):= lim §(2:0(r) = —Quy(2)2 = ﬂglgfi@().

Remarkably, the (horizon) Freudenthal dual of 2 is nothing but (1 /7 times) the symplectic gradient

(1.19)

of the Bekenstein-Hawking black hole entropy Sggy; this latter, from dimensional considerations, is
only constrained to be an homogeneous function of degree two in 2. As a result, 2=2 (2) is
generally a complicated (non-linear) function, homogeneous of degree one in 2.

It can be proved that the entropy Spy itself is invariant along the flow in the charge space 2
defined by the symplectic gradient (or, equivalently, by the horizon Freudenthal dual) of 2 itself :

Spr (2) = Spr (Su (2)) = Spu (;Qasgiég)) = Spu (é) . (1.20)
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It is here worth pointing out that this invariance is pretty remarkable : the (semi-classical)
Bekenstein-Hawking entropy of an extremal black hole turns out to be invariant under a generally
non-linear map acting on the black hole charges themselves, and corresponding to a symplectic
gradient flow in their corresponding vector space.

For other applications and instances of Freudenthal duality, see [9, 10, 11, 12].

2. Groups of Type E;

The concept of Lie groups of type E7 as introduced in the 60s by Brown [13], and then later
developed e.g. by [14, 15, 16, 17, 18]. Starting from a pair (G,R) made of a Lie group G and its
faithful representation R, the three axioms defining (G, R) as a group of type E7 read as follows :

1. Existence of a (unique) symplectic invariant structure Q in R :
Q=1 R xR, 2.1

which then allows to define a symplectic product (-,-) among two vectors in the representa-
tion space R itself :

(01,02) := 0V QY Quiy = — (22, Q1) - 2.2)
2. Existence of (unique) rank-4 completely symmetric invariant tensor (K-tensor) in R :
JIK=1€ (RxRxRxR), 2.3)
which then allows to define a degree-4 invariant polynomial /4 in R itself :

L := Kynpo Q" OV 0P 0°. (2.4)

3. Defining a triple map 7 in R as

T : RxRxR—=R; (2.5
(T (Q1,02,03),04) : = KunpoQ} 0¥ 0502, (2.6)

it holds that
(T (01,01,02).T(Q2,02,02)) = (01, 02) Knunro Q1! 05 05 05 2.7)

This property makes a group of type E7 amenable to a description as an automorphism group
of a Freudenthal triple system (or, equivalently, as the conformal groups of the underlying
Jordan triple system - whose a Jordan algebra is a particular case - ).

All electric-magnetic duality (U-duality!) groups of .4 > 2-extended D = 4 supergravity the-
ories with symmetric scalar manifolds are of type E7;. Among these, degenerate groups of type
E7 are those in which the K-tensor is actually reducible, and thus I is the square of a quadratic

'Here U-duality is referred to as the “continuous” symmetries of [19]. Their discrete versions are the U-duality
non-perturbative string theory symmetries introduced by Hull and Townsend [20].
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invariant polynomial /. In fact, in general, in theories with electric-magnetic duality groups of
type E7 holds that

Sp = 1/ [14(2)] = 1/ [Kuwpo 24 28 27 29|, 2.8)

whereas in the case of degenerate groups of type E it holds that Iy (2) = (I (,@))2, and therefore
the latter formula simplifies to

S = 1/ (2)] = 7 |b (2)]. (2.9)

Simple, non-degenerate groups of type E; relevant to .4” > 2-extended D = 4 supergravity
theories with symmetric scalar manifolds are listed e.g. in Table 1 of [21].

Semi-simple, non-degenerate groups of type E; of the same kind are given by G = SL(2,R) x
SO(2,n) and G = SL(2,R) x SO(6,n), with R=(2,2+n) and R = (2,6 + n), respectively relevant
for 4" =2 and ./ = 4 supergravity.

Moreover, degenerate (simple) groups of type E; relevant to the same class of theories are
G=U(l,n)and G =U(3,n), with complex fundamental representations R=n+1and R=3+n,
respectively relevant for .4 =2 and .4/ = 3 supergravity [17].

The classification of groups of type E7 is still an open problem, even if some progress have
been recently made e.g. in [22] (in particular, cfr. Table D therein).
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