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1. Introduction

The incipt of the 1859 novel The Tale of Two Cities by Charles Dickens

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of
foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light,
it was the season of Darkness, it was the spring of hope, it was the winter of despair, · · ·

beautifully summarises the state-of-the-art of modern cosmology. It will be soon clear why.
Any cosmological model to be successful must

• Provide a satisfactory prediction of the physics of the early Universe.

• Provide initial conditions for the origin of the cosmological perturbations, explain their evo-
lution and the statistical properties of the cosmic structure we observe in the Universe.

• Correctly describe the dynamics of the Universe.

• Determine the cosmological parameters and provide a fundamental understanding of such
quantities.

There are various tests one can perform in order to evaluate if any cosmological model reproduces
the observational knowledge in our possession. The kinematical tests probe the content of the
Universe and its geometry and they do so through, for example, measurements of the expansion
rate, the luminosity and angular diameter distance. Ref. [1] offers a fantastic 2.4% determination
of the local value of the Hubble constant H0 = 73.24±1.74 km sec−1 Mpc−1, see Fig. 1.

Figure 1: The Hubble diagram of more than 600 SNe Ia at redshifts 0.01 < z < 0.4. From Ref. [1].

Another essential test is the structure formation probe, which is supposed to give us information
about the content of the Universe and the nature of the perturbations. It takes place through mea-
surements of the Cosmic Microwave Background (CMB) anisotropies as well as of the Large Scale
Structure (LSS). These two subjects have been addressed by the previous two speakers and we will
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not go further in detail. Suffice to say that the Cosmological Standard Model is now a synonym
for the so-called ΛCDM model or concordance model. It is a few-parameter model which assumes
a flat Universe and a non-vanishing cosmological constant Λ and is able to fit a large amount of
current data. The fundamental inout parameters are

1. The amount of Cold Dark Matter (CDM), ΩCDM.

2. The amount of baryons, Ωb.

3. The spectral index of the primordial cosmological perturbations, nζ .

4. The amplitude of the primordial cosmological perturbations, Aζ .

5. The reionization optical depth τ .

The ΛCDM has shown some tension with the recent local determination for the Hubble constant
provided in Ref. [1], which is about 3.4σ higher than value 66.93±0.62 km sec−1 Mpc−1 predicted
by the concordance models with three neutrinos with mass 0.06 eV and the Planck data [2]. While
this discrepancy is certainly not due to sample variance, it might well due to some systematics in
both measurements. If not so, the origin of the difference might be ascribed to some fluid with an
equation of state w < −1 or to some interaction between the dark energy and the dark matter. In
any case to something that goes beyond the ΛCDM model. Only the future will tell us.

The real problem with the ΛCDM model is what we dubbed the Fundamental Understanding
Problem. The ΛCDM model delivers an almost perfect fit to the current data at various cosmo-
logical scales and epochs as long as ΩΛ = 0.685± 0013 and ΩCDM = 0.315± 0.013. However,
we do not have the slightest idea of the origin of such minuscule cosmological constant and we
do not know anything about the origin of the DM. The situation is quite similar to what happens
in the Standard Model of weak interactions. We know it nicely describes the interactions up to
the TeV energy scale, but we are ignorante about the origin of the baryon asymmetry, the neutrino
masses, the flavour structure, not to mention the naturalness problem affecting the Higgs sector.
Nevertheless, cosmology provides a fantastic playground for HE physicists and in this talk we will
touch upon (with some bias) two pillars of the Cosmological Standard Model: the initial conditions
provided by inflation and DM.

2. First pillar: inflation

There is little doubt among most of the members of the cosmology community that the Uni-
verse went through a period of accelerated expansion [3], most likely sourced by a scalar field,
dubbed the inflaton, with a very flat potential inducing a slow-roll dynamics in such a way that the
energy density of the universe is driven by the potential energy of the inflaton field φ

H2 =

(
ȧ
a

)2

' V (φ)

3M2
Pl
⇒ a(t)∼ eHt . (2.1)

One first consequence of this exponential expansion is that the local space curvature is reduced
basically to zero

2



P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
5
9
9

Short Title for header Riotto Antonio

Ω−1 =
k

a2H2 = O
(
e−2N) , (2.2)

where N is the number of e-folds to the end of inflation. Since N is larger than 40 or so, one
automatically deduces that inflation predicts the current value of Ω to be extremely close to unity.
Current Planck data give ΩΛ + ΩCDM = 0.685+ = 0.315 = 1 with a permille error. This is a
fantastic prediction of inflation being confirmed.

The second incredible gift inflation gave us is its explanation of the CMB anisotropies and the
LSS we observe in the universe. The idea is the following. During the fast and accelerated infla-
tionary expansion, small perturbations are generated at the quantum level. This is an unavoidable
consequence any time the Universe expands or contracts. Indeed, at the microscopic level pairs
of particles are generated and destroyed making the vacuum dynamical. In a static situation these
newly-bork particles will annihilate and go back to the vacuum. However, in an exponentially ex-
panding Universe, these particles are driven far apart and from virtual they become real particles.
An external observer will see pairs of particles popping out. They can be thought as perturbations
of the background.

Another important aspect of these perturbations is that their physical wavelength grows with
time, λ = (2π/k)a, where k is the comoving momentum. This means that, even though the pertur-
bations are originated at quantum scales, their wavelenghts are stretched to cosmological scales. In
doing so, from quantum they become classical. Gravity or, better to say, the gravitational instabil-
ity phenomenon due to the attractive property of the gravitational force, will do the rest by making
these tiny perturbations become clumpier and clumpier.

From a more mathematical point of view one can show that any massless scalar field σ(~x, t) is
quantum-mechanically excited during inflation. Let us from its action

S =
∫

d4x
1
2
√
−g(∂σ)2 . (2.3)

By splitting the scalar field into its zero-mode and the perturbations,

σ(~x, t) = σ0(t)+δσ(~x, t), (2.4)

and by introducing the conformal time dτ = dt/a(t), one can show that the equation of motion for
the Fourier transform u~k(τ) = a(τ)δσ~k(τ) becomes [3]

u′′~k +
(

k2− a′′

a

)
u~k = 0. (2.5)

The corresponding power spectrum on large scales, that is for λ � H−1 is flat

Pδσ =
k3

2π2

∣∣δσ~k

∣∣2 = ( H
2π

)2

k0. (2.6)

This surprising result, the fact that the power spectrum of the perturbations of a massless scalar
field does not depend on its wavelength, is in fact a direct consenquence of the so-called dS/CFT
correspndance [4]. The metric during a period where the energy density of the Universe is driven
by a constant vacuum energy is called de Sitter and reads
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ds2 =
1

H2τ2

(
dτ

2−d~x2) . (2.7)

This metric is clearly invariant under dilations, τ→ λτ and~x→ λ~x. Furthrmore, it is also invariant
under special conformal transformations, spatial rotations and translations. At the hypersurface
identified by τ = 0, the end of inflation, all these transformations for the group CFT3, the three-
dimensional group of conformal transformations. Since, for instance, under dilations the perturba-
tions transform as δσ~k→ λ−3δσ~k/λ

and the action is invariant under dilations, the power spectrum
must be scale-invariant. One other way to mathematically state that is that the spectral index of the
power spectrum, Pδσ ∼ knδσ−1, must be equal to unity, nδσ = 1.

Of course, during a realistic stage of inflation, the metric may not be exactly de Sitter, oth-
erwise inflation will never end: the inflaton must slowly rolls along a potential which is slightly
tilted. Inflation therefore predicts a small breaking of scale-invariance. In the high energy physics
language, the slightly broken scale invariance is associated to a pseudo Nambu-Goldstone boson
representing fluctuations in the clock. Different regions expands slightly differently because of a
non-vanishing comoving curvature perturbation ζ

ζ ∼ δa
a
∼ Hδ t ∼ H

δφ

φ̇0
. (2.8)

Because of this simple logic, the spectral index of ζ is expected to be different, but close to unity.
The fact that Planck has set up its value around 0.96 is another astonishing prediction of inflation
which has become true

Figure 2: The evolution of the comoving curvature perturbation.

The characterization of the power spectum generated during inflation is only the first step. We are
more and more convinced that the LSS we see in our Universe as well as the CMB anisotropies
owe their origin to some primeval inhomogeneities generated during primordial inflation. Yet,
the precise mechanism by which cosmological perturbations are generated is not established. In
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the standard single-field models of inflation where there is a universal clock, the inflaton, density
perturbations may be ascribed to fluctuations of the inflaton itself when it slowly rolls down along
its potential. In the curvaton mechanism [5] the final curvature perturbation ζ is produced from an
initial isocurvature mode associated with the quantum fluctuations of a light scalar (other than the
inflaton), the curvaton, whose energy density is negligible during inflation.

The observable which proves fundamental in providing information about the mechanism cho-
sen by Nature to produce the structures we see today is Non-Gaussianity (NG), that is the deviation
from a Gaussian statistics through the presence of higher-order connected correlation functions of
the perturbations. Indeed, a possible source of NG could be primordial in origin, being specific to
a particular mechanism for the generation of the cosmological perturbations. This is what makes
a positive detection of NG so relevant: it might help in discriminating among competing scenar-
ios which otherwise might be undistinguishable. Let us consider the three-point correlator in the
squeezed limit, in which one wavelength is much larger than the others. In single-field models, the
effect of such a constant long-wavelength mode on an n-point function may be reproduced as the
rescaling of the coordinates

〈ζ (~x1) · · ·ζ (~xn)〉ζL = 〈ζ (~x
′
1) · · ·ζ (~x′n)〉. (2.9)

This argument implies that in that case the squeezed limit of the (n+1)-point function would be

〈ζ~qζ~k1
· · ·ζ~kn

〉′q→0 = Pζ (q)

[
3(n−1)+

n

∑
a=1

~ka ·~∇ka

]
〈ζ~k1
· · ·ζ~kn

〉′, (2.10)

where primes indicate we have removed pi’s and Dirac delta functions. For n = 2, the relation
above provides the famous Maldacena’s consistency relation for the three-point correlator of the
comoving curvature perturbation in the squeezed limit. It will be badly violated in curvaton-like
models. Hence, the extremely relevance of an accurate measurement of the three-point-correlator.

A violation of the consistency relation (2.10) would indicate the presence of non-trivial physics
during inflation. The question is then which models can violate the consistency relation and which
signatures to expect from them. As already mentioned, a violation of the consistency relation could
indicate the presence of additional degrees of freedom. This requires a careful study of the physics
of higher-spin fields during inflation, which has attracted a lot of attention recently [6, 7]. The
problem of writing down consistent equations of motion and Lagrangians for higher-spin fields
goes back to the beginning of quantum field theory and is particularly difficult fo massless fields.
Massless degrees of freedom with spin s≥ 1 are gauge fields and they come with a corresponding
gauge invariance needed to decouple unphysical polarisations. The problem of writing consistent
self-interactions become therefore highly constrained and complicated.

In flat space one can write down consistent gauge-invariant equations of motion for the free
fields, but it seems impossible to have non trivial S-matrices for spins s > 2 since the gauge invari-
ances are accompanied with conserved charges and the conservation laws are too strong to allow
non-trivial S-matrices. On the other hand, there are some explicit constructions of self-interacting
massless HS theories away from flat spacetime when a non-vanishing cosmological constant is al-
lowed. This is particularly interesting when thinking of the possible role of higher spin fields during
inflation. These theories always contain the massless spin-2 graviton and are therefore theories of
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gravity. An important feature of these higher-spin theories in is that mathematical consistency im-
plies that they involve an infinite tower of fields of all spins. Of course, to assess the importance
of massless higher spin fields during inflation one has to deal not only with the infinite tower of
degrees of freedom (which might turn out to be a bonus from the observational point of view), but
also to compute the couplings of the massless HS fields to the matter (inflaton) sector.

3. Second pillar: dark matter

There is no dispute that the DM in cosmology and HEP has been dominated by the WIMP paradigm,
i.e. that of a neutral cold particle with weak interactions whose abundance is determined by the
freeze-out to be

ΩCDM '
3 ·10−27 cm3 sec−1

〈σAv〉
. (3.1)

The fact that weak interactions imply an abundance in the ballpark of what measured is called the
WIMP-miracle. A strong point of the WIMP is its complementarity search chart, see Fig. 3.

Figure 3: The WIMP complementarity search chart.

Nevertheless, in the absence of any signature, the situation is becoming similar to what our HEP
fellows are into now: naturalness calls for supersymmetry, but no sign of it. WIMP’s may be
around the corner, but for sure it is healthy to cope with

• the moderate idea that DM might have another origin, other interactions, production mecha-
nisms (good for HEP),

• and maybe with the extreme (and hopefully wrong idea) that it manifests itself only through
gravitational effects.

One possible moderate variation away from the WIMP is the ultralight axion, i.e. a pseudo-scalar
particle with mass ma around 10−22 eV, whose de Broglie length therefore is around the Kpc [8].
The beauty of this candidate is its quantum nature at the Kpc scale. Indeed, its wave-function
satisfies a Gross-Pitaevskii-Poisson equation of the form
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i∂tψ =−∇
2
ψ/2ma +ma(Φ−g|ψ|2/8)ψ, (3.2)

where Φ is the corresponding gravitational potential. This system is in fact a Bose-Einstein con-
densate (in the cosmo) and the kinetic term ∇2ψ offers the source for the quantum pressure at small
scales. Recent constraints on the masses of these extremely light bosons from Lyman-α forest data
seems to rule out such a possibility [9]. However, non-linearities, which are fundamental in highly
populated environments have not been accounted for.

4. Conclusions

Cosmology offers a fantastic playground for HE physicists where they can test their theories
or invent new ones to fit the observations in the cosmo. This relation is more intimate than ever.
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