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1. Introduction

One of the interesting consequences of nonzero values of neutrino masses is that neutrinos can
have electromagnetic properties [1–3]. Among the electromagnetic properties of massive neutrinos
the most studied and understood are anomalous magnetic moments [4, 5]. The effects of neutrino
magnetic moments are searched both in astrophysics and in laboratory measurements. In particular,
one might expect manifestations of these effects in astrophysical objects such as magnetars, neutron
stars, supernovae, etc., where neutrinos propagate over long distances in the presence of strong
magnetic fields. The coupling of neutrino magnetic moments to an external magnetic field can give
rise to the phenomenon of neutrino spin-flavor oscillations [6–18] and, hence, can influence the
neutrino fluxes from such astrophysical sources.

In the following we formulate an effective equation for treating neutrino spin-flavor oscilla-
tions in a magnetic field and outline the potential impact of neutrino magnetic moments on oscilla-
tions of Majorana neutrinos from supernovae.

2. Neutrino oscillations in a magnetic field

The Hamiltonian of the neutrino magnetic moment interaction with an electromagnetic field
is given by

HEM =
1
2 ∑

j,k
µ jkν jσµννkFµν +h.c., (2.1)

where µ jk are magnetic moments of diagonal ( j = k) and transition ( j 6=k) types, Fµν is the elec-
tromagnetic field tensor, and σµν = i(γµγν − γνγµ)/2. In the case of a constant uniform magnetic
field ~B the Hamiltonian (2.1) acquires the form

HEM =−∑
j,k

µ jkν̄ j(~Σ ·~B)νk +h.c., ~Σ =

(
~σ 0
0 ~σ

)
, (2.2)

where ~σ is the Pauli matrix.
We limit ourselves to the case of two Dirac neutrino physical states, ν1 and ν2, with masses

m1 and m2. For treating neutrino evolution in the presence of a uniform magnetic field in the
ultrarelativistic limit, it is customary to employ a four-component basis of the helicity states ν1,s=±1

and ν2,s±1. The Schrödinger-like evolution equation is then given by

i
d
dt


ν1,s=1

ν1,s=−1

ν2,s=1

ν2,s=−1

= He f f


ν1,s=1

ν1,s=−1

ν2,s=1

ν2,s=−1

 , (2.3)

where the effective Hamiltonian He f f consists of the vacuum and interaction parts,

He f f = Hvac +HEM. (2.4)

Taking into account that in the discussed ultrarelativistic limit the chiral and helicity components
practically coincide, we transform to the flavor basis using the relations

ν
R,L
e = ν1,s=±1 cosθ +ν2,s=±1 sinθ , ν

R,L
µ =−ν1,s=±1 sinθ +ν2,s=±1 cosθ , (2.5)
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where ν
R,L
e and ν

R,L
µ are electron and muon neutrino chiral states.

The evolution equation (2.3) in the flavor basis (see, for instance, Ref. [19]) can be recast
into a fourth-order homogeneous linear differential equation with constant coefficients, which is
exactly solvable. This means that one can derive closed-form expressions for neutrino flavor and
spin oscillation probabilities. In a general case these expressions appear to be very cumbersome.
However, in some specific situations the oscillation probabilities can be well described with simple
formulas. For example, these can be the cases when the neutrino interaction with the longitudinal
magnetic-field component B‖ is negligible and (i) ω� µνB or (ii) ω� µνB, where ω =∆m2

12/4Eν

is the vacuum oscillation frequency and µν is a putative magnetic moment. In the regime ω� µνB,
assuming that at t = 0 the neutrino is in the νL

e state, the flavor-change and spin-flip probabilities,
PνL

e→νL
µ

and PνL→νR , depend on time according to

PνL
e→νL

µ
(t) = [1−PνL→νR(t)]sin2 2θ sin2

ωt, PνL→νR(t) = sin2
ωBt, (2.6)

where ωB = µνB. In the regime ω � µνB, the discussed probabilities are well approximated by

PνL
e→νL

µ
(t) = cos2 2θ sin2

ωBt, PνL→νR(t) =
1
2
(1+ sin2θ)sin2 2ωBt. (2.7)

The approximations (2.7) become exact in the limit ω/ωB→ 0.

3. Electromagnetic interactions and oscillations of supernova neutrinos

A valuable insight into the neutrino magnetic moments can be provided by studies of neu-
trinos from their intensively energetic sources such as supernovae. It was pointed out long time
ago that the neutrino-neutrino refraction in the supernova environment may be very important for
neutrino flavor conversions, and recently the nonlinear evolution of neutrino flavors has been found
to dramatically change the neutrino energy spectra [20]. Depending on the initial neutrino fluxes
and energy spectra, a complete swap between neutrino spectra of electron and non-electron flavors
can take place in the whole or a finite energy range, as a direct consequence of collective neutrino
oscillations.

The impact of nonzero magnetic moments for massive Majorana neutrinos on collective neu-
trino oscillations has been explored in Refs. [21, 22]. It should be noted that since a Majorana
field has half the degrees of freedom of a Dirac field, the electromagnetic properties of massive
Majorana neutrinos are reduced such that they can have only transition magnetic moments. For a
magnetic field of 1012 G and the transition magnetic moment at the level of 10−22 µB, which is
just two orders of magnitude larger than the standard-model prediction corresponding to neutrino
masses of the order of 0.1 eV, the pattern of spectral splits of supernova neutrinos may be observed
in future experiments such as the Jiangmen Underground Neutrino Observatory (JUNO) [23, 24].
The identification of the spectral splits will allow probing values of the neutrino magnetic moments
which are extremely small and impossible to detect in other terrestrial experiments.
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