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1. Introduction: neutrino spin oscillations in magnetic field and matter currents

Massive neutrinos participate in electromagnetic interactions (see [1] and [2] for a review and
the recent update). One of the most important phenomenon of nontrivial neutrino electromagnetic
interactions is the neutrino magnetic moment precession and the corresponding spin oscillations in
presence of external electromagnetic fields. The later effect has been studied in numerous papers
published during the several passed decades.

Within this scope the neutrino spin oscillations νL ⇔ νR induced by the neutrino magnetic
moment interaction with the transversal magnetic field B⊥ was first considered in [3]. Then spin-
flavour oscillations νL

e ⇔ νR
µ in B⊥ in vacuum were discussed in [4], the importance of the matter

effect was emphasized in [5]. The effect of the resonant amplification of neutrino spin oscillations
in B⊥ in the presence of matter was proposed in [6, 7], the impact of the longitudinal magnetic
field B|| was discussed in [8]. The neutrino spin oscillations in the presence of constant twisting
magnetic field were considered in [8, 9, 10, 11, 12, 13, 14].

Recently a new approach to description of neutrino spin and spin-flavour oscillations in the
presence of an arbitrary constant magnetic field have been also developed [14, 15]. Our approach,
that is more precise than the previously used, is based on the use of the stationary states in the
magnetic field for classification of neutrino spin states, contrary to the customary approach when
the neutrino helicity states (that are in fact are not stationary in the presence of a magnetic field)
are used for this purpose.

In [16] neutrino spin oscillations were considered in the presence of an arbitrary constant
electromagnetic fields Fµν . A neutrino spin oscillations in the presence of the field of circular
and linearly polarized electromagnetic waves and superposition of an electromagnetic wave and
constant magnetic field and the corresponding resonance conditions were considered in [17, 18, 19].
Neutrino spin precession and oscillations spin evolution problem in a more general case when the
neutrino is subjected to general types of non-derivative interactions with external fields that are
given by the Lagrangian were considered in [20].

Recently we consider in details [21] neutrino mixing and oscillations in arbitrary constant
magnetic field and derived an explicit expressions for the effective neutrino magnetic moment for
the flavour neutrinos in terms of the corresponding magnetic moments introduced in the neutrino
mass basis (see also [15]).

For many years, until 2004, it was believed that a neutrino helicity precession and the corre-
sponding spin oscillations can be induced by the neutrino magnetic interactions with an external
electromagnetic field. A new and very interesting possibility for neutrino spin (and spin-flavour)
oscillations engendered in presence of matter background was proposed and investigated for first
time in [22]. It was shown that neutrino spin oscillations can be induced not only by the neutrino
interaction with a magnetic field, as it was believed before, but also by neutrino interactions with
matter in the case when there is a transversal matter current or matter polarization. This new effect
has been explicitly highlighted in [22, 23].

Note that the existence of the discussed effect of neutrino spin oscillations engendered by the
transversal matter current and matter polarization and its importance for astrophysical applications
have been confirmed in a series of recent papers [24, 25, 26, 27].
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For the further consideration of neutrino propagation and oscillations in matter, it might be
useful to know exact wave functions and energy spectrum of neutrino in arbitrary moving external
media. In the next section, we solve this problem.

2. Modified Dirac equation and integrals of motion

In this section we are going to obtain neutrino exact wave functions and energy spectra in an
arbitrary moving matter. For the sake of simplicity suppose that media consists only of neutrons.
If there are macroscopic number of neutrons on the neutrino De Broglie wavelength, interaction is
described by the following effective Lagrangian

Lint =− fµ

(
νγµ 1+ γ5

2
ν
)
, f µ =

GF√
2

jµ , (2.1)

where jµ is matter current:
jµ = γ(n,nvvv), (2.2)

vvv matter velocity, n is neutron density in the laboratory frame, and γ = 1√
1−v2 is a Lorentz-factor.

Using this Lagrangian one can derive the following modified Dirac equation for a neutrino in
an arbitrary moving matter: (

iγµ∂µ −
1
2

γµ(1+ γ5) fµ −m
)

ψ(x) = 0 (2.3)

This equation and its exact solutions for the case of non-moving matter were obtained for the
first time in the work [29]. We, in turn, consider the case of an arbitrary moving medium.

For the further consideration it’s convenient to rewrite equation (2.3) in Schrödinger-like form:

i
∂ψ(x)

∂ t
= Ĥmattψ(x), (2.4)

where Hamiltonian is given by

Ĥmatt =−γ5

[
Σ̂ΣΣppp+

GFn/
√

2
2
√

1− v2
(1+ γ5)Σ̂ΣΣvvv

]
+

GFn/
√

2
2
√

1− v2
(1+ γ5)+ γ0m (2.5)

Here we use Dirac representation of gamma matrices, where Σk = γ0γkγ5. Schrödinger for-
mulation allows us to find integrals of motion. We consider the case of a uniform matter moving
with a constant velocity. Then the four-momentum operator commutes with the Hamiltonian (2.5),
and hence an energy and a momentum of a neutrino are conserved. Using commutation relations
for Dirac matrices, it’s easy to show that:

[
Σ̂ΣΣppp, Ĥmatt

]
= i

GFn/
√

2√
1− v2

(1+ γ5)(Σ̂ΣΣ · [ppp× vvv]), (2.6)

i.e. helicity is not conserved in the general case. Particular cases with helicity conservation, such
as a non-moving matter or a matter that has a velocity parallel to a neutrino momentum, were
previously discussed in literature.
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We are interested in the case of an arbitrary matter velocity. For our purpose we introduce a
new spin operator, that commutes with the Hamiltonian (2.5). That operator has the following form

ŝv =
1
p

[
Σ̂ΣΣppp+

GFn/
√

2
2
√

1− v2
(1+ γ5)Σ̂ΣΣvvv

]
, p = |ppp| (2.7)

One can show that

[
ŝv, Ĥmatt

]
=

GFn/
√

2
2
√

1− v2

m
p

Σ̂ΣΣvvv[γ5,γ0]. (2.8)

Therefore, in ultra-relativistic limit the new spin operator is an integral of motion.
Unlike an ordinary helicity operator, our spin operator has four eigenvalues:

sv =±1;±1
p

∣∣∣∣∣ppp+ GFn/
√

2√
1− v2

vvv

∣∣∣∣∣ . (2.9)

But below we show that only two of them correspond to real physical states.

3. Neutrino wave function and energy spectrum in moving matter

As we previously stated, for the case of a uniform matter moving with a constant velocity, an
energy and a momentum are conserved. Then for neutrino stationary states we get

ψ(x) =
e−i(Et−ppprrr)

L
3
2

u(p), (3.1)

where u(p) is independent of time and spatial coordinates, and L is the normalization length. Sub-
stituting this into equation (2.3), we get

Eu(p) =

[
−γ5sv p+

GFn/
√

2
2
√

1− v2
(1+ γ5)

]
u(p) (3.2)

Upon the condition that the system has a nontrivial solution, we arrive to the energy spectrum:

Eε,sv =
GFn/

√
2

2
√

1− v2
+ ε

(
sv p− GFn/

√
2

2
√

1− v2

)
, (3.3)

where ε =±1.
Taking into account (3.3), one can transform u(p) to the following form

u(p) =

(
φ

εφ

)
, (3.4)

were φ is an arbitrary two-component spinor.
We use the fact that we are looking for stationary states with a certain spin number (2.9):

ŝvψ(x) = svψ(x). (3.5)
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This condition is equivalent to the following eigenvector problem:

σσσPPPφ = sv pφ, (3.6)

where

PPP = ppp+(1− ε)
GFn/

√
2

2
√

1− v2
vvv. (3.7)

It has nontrivial solutions only upon the condition PPP2 = s2
v p2. Taking into account an explicit form

of vector PPP, for sv we get

sv =±1
p

∣∣∣∣∣ppp+(1− ε)
GFn/

√
2

2
√

1− v2
vvv

∣∣∣∣∣ . (3.8)

It means that in (2.9) sv = ±1 implements only for ε = 1 and sv = ± 1
p

∣∣∣ppp+ GF n/
√

2√
1−v2 vvv

∣∣∣ for ε = −1.
Thus we showed, that there are only four physical states with quantum numbers s = sgn(sv) =±1
and ε =±1.

Finally, we can get solutions of equation (2.3):

ψ(x) =
e−i(Es,ε t−ppprrr)

2L
3
2



√√√√√1+ s
p3+

GF n/
√

2

2
√

1−v2
(1−sε)v3√

ppp2+(1−εs)
[

GF n/
√

2√
1−v2

pppvvv+
G2

F n2vvv2

4(1−v2)

]

s

√√√√√1− s
p3+

GF n/
√

2

2
√

1−v2
(1−sε)v3√

ppp2+(1−εs)
[

GF n/
√

2√
1−v2

pppvvv+
G2

F n2vvv2

4(1−v2)

]eiδs,ε

sε

√√√√√1+ s
p3+

GF n/
√

2

2
√

1−v2
(1−sε)v3√

ppp2+(1−εs)
[

GF n/
√

2√
1−v2

pppvvv+
G2

F n2vvv2

4(1−v2)

]

ε

√√√√√1− s
p3+

GF n/
√

2

2
√

1−v2
(1−sε)v3√

ppp2+(1−εs)
[

GF n/
√

2√
1−v2

pppvvv+
G2

F n2vvv2

4(1−v2)

]eiδs,ε



, (3.9)

Eε,s =
GFn/

√
2

2
√

1− v2
(1− sε)+ ε

√√√√ppp2 +(1− εs)

[
GFn/

√
2√

1− v2
pppvvv+

G2
Fn2vvv2

4(1− v2)

]
, (3.10)

where tanδs,ε =
p1+(1−sε) GF n/

√
2

2
√

1−v2
v1

p2+(1−sε) GF n/
√

2

2
√

1−v2
v2

and s,ε =±1 are spin number and energy sign.

In the limit n = 0 they coincide with ordinary vacuum solutions of Dirac equation. It’s natural
that solutions have a certain chirality, because it conserves in the limit of a massless particle. The
right-chiral solutions, which correspond to sε = +1, are sterile particles: right neutrino and left
antineutrino.

This work was supported by the Russian Foundation for Basic Research under grants No. 16-
02-01023 A and No. 17-52-53133 GFEN_a.
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