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Thermodynamic instabilities and strangeness
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One of the very interesting aspects in the high energy heavy-ion collisions experiments and in
nuclear astrophysics is a detailed study of the thermodynamic properties of strongly interacting
nuclear matter far away from the nuclear ground state. The main goal of this contribution is to
show that thermodynamic instabilities and phase transitions can take place at finite net baryon
density and temperature, where the onset conditions of deconfined quark-gluon plasma should
not still realized. Similarly to the low density nuclear liquid-gas phase transition, we show that
a finite density phase transition is characterized by pure hadronic matter with both mechanical
instability (fluctuations on the baryon density) that by chemical-diffusive instability (fluctuations
on the strangeness concentration). The main goal is to investigate how the constraints on the
global conservation of the baryon number, electric charge fraction, and strangeness neutrality, in
the presence of Delta-isobar degrees of freedom, hyperons, and strange mesons, influence the
behavior of the equation of state in a regime of finite values of baryon density and temperature.
It turns out that in this situation hadronic phases with different values of strangeness content may
coexist, altering significantly meson-antimeson ratios.
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The relativistic mean-field model is widely successful used for describing the properties of
finite nuclei as well as hot and dense nuclear matter [1, 2, 3, 4]. The Lagrangian for the self-
interacting octet of baryons can be written as [1]

Loctet = ∑
k
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µ −gρk γµ~t ·~ρ µ ]ψk

+
1
2
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b(gσN σ

4)

+
1
2

m2
ω ωµω

µ +
1
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c(g2
ωN ωµω

µ)2 +
1
2

m2
ρ
~ρµ ·~ρ µ

−1
4

FµνFµν − 1
4
~Gµν

~Gµν +ψ∆ν [iγµ∂
µ − (M∆ −gσ∆σ)−gω∆γµω

µ ]ψν
∆ , (1)

where the sum runs over the full octet of baryons and ψν
∆

is the Rarita-Schwinger spinor for the
∆-isobars (∆++, ∆+, ∆0, ∆−) [5, 6, 7]. The adopted coupling constants are the same of Ref. [8].

We are dealing with the study of a multi-particle system at finite temperature and density with
two conserved charges: baryon (B) number and zero net strangeness (S) number (rS = ρS/ρB = 0).
For what concern the electric charge (Q), we work in symmetric nuclear matter with a fixed value
of Z/A = 0.5 and we do not consider fluctuations in the electric charge fraction, due to the high
temperature regime considered in the present investigation [9]. Therefore, the electric charge results
to be separately conserved in each phase during the phase transition and the chemical potential of
particle of index i can be written as µi = bi µB + si µS, where bi and si are, respectively, the baryon
and the strangeness quantum numbers of i-th hadronic species.

Assuming the presence of two phases (denoted as I and II, respectively), the system is stable
against the separation in two phases if the free energy of a single phase is lower than the free energy
in all two phases configuration. The phase coexistence is given by the Gibbs conditions

µ
I
B = µ

II
B , µ

I
S = µ

II
S , (2)

PI(T,µB,µS) = PII(T,µB,µS) . (3)

At a given baryon density ρB and at a given zero net strangeness density rS = ρS/ρB = 0, the
chemical potentials µB are µS are univocally determined by the following equations

ρB = (1−χ)ρ
I
B(T,µB,µS)+χ ρ

II
B (T,µB,µS) , (4)

ρS = (1−χ)ρ
I
S(T,µB,µS)+χ ρ

II
S (T,µB,µS) , (5)

where ρ
I(II)
B and ρ

I(II)
S are, respectively, the baryon and strangeness densities in the low density

(I) and in the higher density (II) phase and χ is the volume fraction of the phase II in the mixed
phase (0 ≤ χ ≤ 1) [10]. An important feature of this conditions is that, unlike the case of a single
conserved charge, baryon and strangeness densities can be different in the two phases, although the
total ρB and ρS are fixed.

For such a system in thermal equilibrium, the possible phase transition can be characterized
by mechanical (fluctuations in the baryon density) and chemical instabilities (fluctuations in the
strangeness number). As usual the condition of the mechanical stability implies

ρB

(
∂P
∂ρB

)
T,ρS

> 0 . (6)
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By introducing the notation µi, j = (∂ µi/∂ρ j)T,P (with i, j = B,S), the chemical stability can
be expressed with the following conditions [8]

µB,B > 0 , µS,S > 0 . (7)

In addition to the above conditions, for a process at constant P and T , it is always satisfied that

ρB µB,B +ρS µS,B = 0 , (8)

ρB µB,S +ρS µS,S = 0 . (9)

Whenever the above stability conditions are not respected, the system becomes unstable and
the phase transition take place. The coexistence line of a system with one conserved charge be-
comes in this case a two dimensional surface in (T,P,rS) space, enclosing the region where me-
chanical and diffusive instabilities occur [8].

In Fig. 1, we show the pressure as a function of baryon density at fixed temperature. The con-
tinuous (dashed) lines correspond to the solution obtained with (without) the Gibbs construction. In
this case the conditions of mechanical and chemical stability are not satisfied and the system goes
to a phase transition. Let us observe that, although the system has globally zero net strangeness
(rS = 0), the mixed phase is realized with two phase with different and finite values of strangeness
and different baryon-antibaryon content (baryon and strangeness charges are globally conserved
but are different in the two hadronic phases).
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Figure 1: Pressure at fixed temperature as a function of baryon density (ρ0 is the nuclear saturation density).
The continuous (dashed) lines correspond to the solution obtained with (without) the Gibbs construction.

The above feature imply remarkably consequences in the antiparticle to antiparticle production
and in the strangeness content at different temperatures and baryon densities. In Fig. 2, right panel,
the antiproton to proton ratios R, as a function of the baryon density, are reported for different
temperatures (xσ∆ = gσ∆/gσN = 1.2 is the used σ meson-∆ ratio coupling constant and xω∆ =

gω∆/gωN = 1). The black points in the isothermal curves stand for the beginning and the end of the
phase transition. We observe that at lower (T ≤ 100 MeV) and higher (T ≥ 150 MeV) temperatures,
the phase transition does not occur, while, in the intermediate range of temperature (100 < T < 150
MeV), thermodynamic instabilities take place and this feature can imply an abrupt variation of the
ratio during the phase transition region. Consistently, in Fig. 2, left panel, we report the strangeness
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fraction Y for particle and antiparticle as a function of baryon density at fixed temperature T = 140
MeV. During the phase transition (between the two vertical dashed lines) a strong variation in the
antibaryon-barion ratio takes place with a significant increase of antibaryon (B̄) particles. This
feature is reflected in the strangeness fraction with a stronger increase in positive values of YS due
to antibaryon B̄ (antihyperon) particles with respect to negative values due to baryons B (hyperons).
Also meson M and antimeson (M̄) particles undergo to fluctuation in the strangeness fraction but
this feature appears to be less pronounced.
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Figure 2: Left panel: Antiproton to proton ratios as a function of baryon density at different temperatures.
The black points stand for the beginning and the end of the phase transition. Right panel: Strangeness
fractions Y of baryons (B), mesons (M) and their antiparticles as a function of baryon density in the pure
hadronic phase and in the mixed phase at fixed temperature and zero net strangeness.

In conclusion, similarly to the liquid-gas phase transition in a warm and low density nuclear
matter, a pure hadronic phase transition also can occur at higher temperatures and densities due
to the presence of both mechanical and chemical instabilities. During the phase transition the two
hadronic phases have a different baryon density and different strangeness fraction in the mixed
phase, although the global strangeness is fixed to zero. This feature could be phenomenological
very relevant in order to identify such phase transition in the future compressed baryonic matter
experiments.
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