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1. The Beryllium anomaly in a U(1)′-2HDM

The Atomki pair spectrometer experiment [1] has studied the decay of the excited 8Be nuclei,

focusing on the e+e− internal pair creation process. These excitations were produced with a beam

of protons directed on a target of Lithium (7Li). The possibility to tune the energy of the protons

with high accuracy has allowed for a resonant production and precise selection of the different 8Be

excitations. An anomaly has been observed in the decay of the energy level characterised by an

excitation energy of 18.15 MeV, the 8Be∗ state (with spin-parity JP = 1+ and isospin T = 0), into

the ground state 8Be (JP = 0+ and T = 0). From the analysis of the properties of the electron-

positron pair, in particular of their opening angle and invariant mass distributions, the Atomki

collaboration has observed an excess consistent with the on-shell emission of an intermediate boson

X eventually decaying into e+e−. The best fit to the mass MX and the corresponding normalised

Branching Ratio (BR) are given by

MX = 16.7±0.35 (stat) ±0.5 (sys) MeV,

BR(8Be∗ → X + 8Be)

BR(8Be∗ → γ + 8Be)
×BR(X → e+e−) = 5.8×10−6 , (1.1)

with a statistical significance of the excess of about 6.8σ [1].

The same collaboration has also recently presented evidences of an excess, compatible with a 17

MeV boson mediation, in the 8Be∗
′

(JP = 1+ and T = 1) transition which is characterised by an

excitation energy of 17.64 MeV [1]. Because of the less available phase space, the anomaly in this

decay channel is expected to be kinemetically suppressed. The result is not public yet we do not

account for it in the following analysis, but we ought to mention it.

An attempt to explain the properties of the X boson was carried out in [2, 3] in which a new spin-1

boson, Z′, with vector-like couplings to Standard Model (SM) leptons and quarks, was considered.

The couplings of such a light state with quarks are, in general, strongly constrained from π0 → Z′+

γ searches at the NA48/2 experiment [4]. Complying with this bound requires the Z′ interactions

to quarks to satisfy the ‘protophobic’ condition, namely, |2εu + εd |. 10−3 where εu and εd are the

couplings to up and down quarks normalised with the positron charge e. In the footsteps of these

works, further studies of such models have been performed in [5, 6, 7, 8, 9, 10, 11, 12, 13]. A

completely alternative explanation was proposed in [14] in which the X boson was identified with

a light pseudoscalar and its couplings to up and down type quarks were qauntified to be about 0.3

times those of the SM Higgs.

In [15] we considered the impact of the Beryllium anomaly on a rather generic extension of the

SM described by an extra U(1)′ group in which the Z′ interactions are characterised by a general

V/A structure, namely J
µ
Z′ = ∑ f ψ̄ f γµ

(

C f ,V γµ +C f ,Aγµγ5
)

ψ f . Such scenarios with a light gauge

mediator have been extensively studied in the past literature [16, 17, 18, 19, 20, 21].

Due to the presence of two Abelian gauge groups, U(1)Y ×U(1)′, a kinetic mixing between the

corresponding gauge fields is allowed and a new free parameter, g̃, is introduced beside the usual

gauge coupling g′. In the limit in which g′, g̃≪ 1 the Z′ interactions are described by the coefficients

C f ,V ≃ g̃c2
W Q f +g′

[

zΦ(T
3
f −2s2

W Q f )+ z f ,V

]

,

C f ,A ≃ g′
[

−zΦ T 3
f + z f ,A

]

, (1.2)
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where z f ,V/A are the vector and axial-vector U(1)′ charges, sw and cw are, respectively, the sin and

cos of the Weinberg angle and Q f , T 3
f are the electromagnetic charge and the third component of

the weak ispospin. zΦ is the U(1)′ of the Higgs scalar or a combination of charges in a general

scenario with more than one SU(2) doublet. As shown in [22, 15], the axial coefficients C f ,A

are suppressed with respect to the vector-like ones as a consequence of the gauge invariance of the

Yukawa interactions and of the presence of a single SU(2) Higgs doublet in the scalar sector (which

impose relations between the U(1)′ charges of the SM fermions and the Higgs). Interestingly,

this feature is not affected by the requirement of anomaly cancellation and by the presence of

extra matter which could be necessary to account for it. On the other hand, the vector and axial-

vector couplings of the Z′ are of the same order of magnitude in a scenario with multiple SU(2)

scalar doublets such as the two Higgs doublet model (2HDM) which has been considered here.

Indeed, zΦ = zΦ1
cos2 β + zΦ2

sin2 β , where tanβ is defined, as usual, as the ratio of the vevs, and

the cancellation between the two terms in C f ,A of Eq.(1.2) is not realised regardless of the gauge

invariance of the Yukawa Lagrangian.

Before moving to the discussion of the anomaly in the Beryllium decay, we briefly comment on the

spontaneous symmetry breaking in this U(1)′-2HDM configuration. In particular, in the g′, g̃ ≪ 1

limit, the mass of the Z′ is given by

M2
Z′ ≃ m2

B′ +
v2

4
g′

2
(zΦ1

− zΦ2
)2 sin2(2β ), (1.3)

where we have allowed for a possible mass source mB′ from an extra SM-singlet scalar. Notice

that, MZ′ is non-zero even when mB′ → 0 due to a difference between the U(1)′ charges zΦ1
and

zΦ2
of the two scalar doublets. When mB′ = 0, one obtains for MZ′ ≃ 17 MeV and v ≃ 246 GeV,

g′ ∼ 10−4. Notice that, in the case of only one Higgs doublet, MZ′ ≃ mB′ and the extra scalar degree

of freedom is mandatory for the Z′ to acquire a mass.

The scenario described above is able to explain the excess in the 8Be∗ decay through a Z′ resonance.

In particular, the contribution of the axial-vector couplings in the 8Be∗ → 8BeZ′ transition is found

to be proportional to k/MZ′ ≪ 1 (with k being the Z′ momentum) while the vector contribution is

suppressed by k3/M3
Z′ [3]. Indeed, in the first case the Z′ is emitted in a s-wave configuration while

in the latter a p-wave configuration is realised. Therefore, being C f ,V and C f ,A of the same order of

magnitude, we can safely neglect the vector-like contribution.

For the sake of simplicity, we consider type-I 2HDM scenario accompanied by a U(1)dark con-

figuration with z f = 0 and zΦ2
= 0 and we choose zΦ2

= 1 and tanβ = 1. Similar results may be

obtained for different values of tan β and z. The parameter space compatible with the observed

Atomki anomaly, together with the most constraining experimental bounds, is shown in Fig. 1. The

results have been obtained using the matrix elements for the 8Be∗ transition computed in [23]. The

orange region delineates the portion of parameter space complying with the best-fit of the 8Be∗

decay rate in the mass range MZ′ = 16.7MeV − 17.6MeV [1, 3] taking into account the uncer-

tainties of the nuclear matrix elements [23]. The recent hints of an analogous transition in the

isovector excitation 8Be∗
′

[1] has not been considered here and the white region above the orange

one accounts for the non-observation of the latter. Finally, the horizontal grey stripe locates the

values of g′ for which the mass of Z′ is entirely generated by the electroweak symmetry breaking

triggered by the two Higgs doublets (mB′ ≃ 0). The most relevant experimental bounds (shaded
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regions are allowed) are shown on the same plot. In particular, the strongest constraint comes

from atomic parity violation in Cesium (Cs), namely from the measurement of the corresponding

weak nuclear charge ∆QW [24, 25], required to satisfy |∆QW | . 0.71 at 2σ [26]. This bound can

be safely satisfied if the Z′ has either only vector or axial-vector couplings. On the other hand,

in a general scenario it imposes severe constraints on the ratio of the two gauge couplings g′, g̃.

Moreover, the parity-violating Møller scattering measured at SLAC E158 [27] has been enforced,

which requires |Ce,VCe,A| . 10−8 for MZ′ ≃ 17 MeV [22], together with the constraints from the

anomalous magnetic moment of the electron and the muon [28, 29, 30, 31, 32]. Neutrino-electron

scattering processes may also impose severe constraints [33, 34, 35] on the combination of Ce,V/A

and Cν ,V couplings such as the one obtained by the TEXONO collaboration [34]. Indeed, in the

protophobic scenario with a Z′ with only vector interactions, the constrained neutrino coupling of

the Z′ is in tension with the anomalous 8Be∗ decay rate, since Cν ,V = −2Cn,V , where Cn,V is the

Z′ coupling to neutrons responsible for the explanation of the Atomki anomaly. Nevertheless, this

situation is alleviated in the general case where the Z′ boson has also axial-vector interactions be-

cause the gauge couplings g′, g̃ required to explain the anomaly are typically smaller than the ones

of the protophobic scenario.

Figure 1: The orange region is the allowed parameter space explaining the Beryllium anomaly while the

white region above is excluded by the non-observation of the Z′ in the 8Be∗
′

transition. The other shaded

regions represent the parameter space allowed by the Møller scattering and the g− 2 of electron and muon.

The blue line represents values of g′ and g̃ complying with atomic parity violation in Cs. The horizontal

grey stripe determines the values of g′ for which the Z′ mass is generated by the electroweak vev.

2. Conclusions

The model that we have considered above has the necessary features to explain with a light Z′

the anomalous decay of the excited state of the Beryllium. The presence of two Higgs doublets al-

lows to exploit the contributions of both the vector and axial-vector couplings of the Z′ interactions

which are useful, for instance, to alleviate the tension from the bounds on the electron-neutrino

3
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scattering. Moreover, the values of the gauge coupling g′ which reproduce the excess in the 8Be∗

decay also ensure that the mass of the Z′ gauge boson may be generated from the symmetry break-

ing of the electroweak sector of the SM, namely from the EW scale v ≃ 246 GeV.
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