Search for doubly-charged Higgs boson in multi-lepton final states using 36.1 fb⁻¹ with ATLAS at $\sqrt{s} = 13 \text{ TeV}$

[ATLAS-COM-CONF-2017-065]

Search for *new physics* is crucial for the ATLAS research program: Standard Model events with high p_T, isolated, same-charge (SC) leptons are rare, and provide a very powerful signature towards discoveries.

> Doubly Charged Higgs (DCH) bosons appear in many new physics models. In left-right symmetric models, a new set of scalar bosons:

 $\Delta_L = (\Delta_L^0, \ \Delta_L^+, \Delta_L^{++})$

 $\Delta_R = (\Delta_R^0, \Delta_R^+, \Delta_R^{++})$

breaks the $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ symmetry, while parity is restored at the TeV scale. DCH gives mass to neutrinos via a Type II see-saw mechanism. DCH production and **decay** are shown in Fig. 1 and Fig. 2. This search assumes only $H^{\pm\pm} \rightarrow l^{\pm} l^{\pm} decays$, where $l=e,\mu$, allowing flavour violation.

Fig. 1: H^{±±} Drell-Yan pair production

 γ/Z

1) Analysis Regions Definition:

a) Control (CR): to fit VV (ZW,ZZ) and DY normalization; **b**)Validation (VR): to validate fakes and charge flip (Sec.2); c)Signal (SR): used to extract signal rate.

2) Background Estimation:

• **Prompt** leptons from SM processes (mainly VV, *ttV*) taken from MC simulation.

• Fakes, non-prompt leptons from hadron decay or mis-identified jets, are estimated with the *fake-factor(FF)* method. FF measured using di-jet events, with low missing E_T, and validated in VRs.

4) Fit Procedure and Results:

<u>How:</u> implementing a maximum-likelihood fit of the $m(l^{\pm}l^{\pm})$ distribution. Background predictions and systematics from CRs are validated in VRs and extracted to SRs.

No excess observed (Fig.6): setting 95% CL limits. One event of type $e^+\mu^+e^-\mu^-$ (Fig.7) observed in 2P4L SR compatible with background only hypothesis for $ZZ \rightarrow e^+e^-\mu^+\mu^-$ production.

5) Exclusion Limits:

Scanning over branching ratio (Br) combinations:

$$Br(H^{\pm\pm} \to e^{\pm}e^{\pm}) + Br(H^{\pm\pm} \to e^{\pm}\mu^{\pm}) + Br(H^{\pm\pm} \to \mu^{\pm}\mu^{\pm}) + Br(H^{\pm\pm} \to X) = 100\%$$

X are final states that do not have any impact on the signal yield in SRs.

$Br(H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}) \leq 100\%$ Result:

Fig. 4: CF probability $P(p_T, \eta) = \sigma(p_T) \times f(\eta)$: (a) η and (b) p_T dependences.

• Charge Flip (CF) probability, defined as $P(p_{T},\eta)=\sigma(p_{T})\times f(\eta)$, is measured in a $Z/\gamma^* \rightarrow ee$ sample through a likelihood fit. P(p_T, η) is applied as a 1D×1D parametrization of electron η and p_T (Fig.4). Correction-factors derived as the ratio between data/MC and applied to simulated CF electrons.

3) Systematic Uncertainties:

*Fakes: alter event and jet kinematic cuts, MC normalization, sample statistics.

CF: finite statistics of the sample used to estimate the CF rates. ******Experimental*: reconstruction, particle identification, isolation and trigger efficiency, lepton calibration.

******Theory:* cross-section, PDF, EW scale.

Impact of systematic uncertainties in CR/VR/SRs in Fig.5.

Fig. 5: Relative unc. on the total background yield estimation after fit.

Fig. 7: event display of the event observed in 2P4L SR. The SC invariant masses are 228 GeV and 207 GeV, while the OC ones are 163.09 GeV for e^+e^- and 78.89 GeV for $\mu^+\mu^-$.

Fig. 8: minimum limit obtained for each $Br(H^{\pm} \rightarrow l^{\pm})$ from the limits in which $H_{L^{\pm}}$ only decays to $e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$ or $\mu^{\pm}\mu^{\pm}$ pairs. Each decay channel has comparable sensitivity.

$Br(H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}) = 100\%$ Result:

Fig. 9: 2D grid of observed lower mass limit for $H^{\pm}L$ (a) and $H^{\pm}R$ (b) for any combination of Br($H^{\pm} \rightarrow l^{\pm}l^{\pm}$)=100%. Fit performed varying Br($H^{\pm} \rightarrow l^{\pm}l^{\pm}$) from 10% to 100% in steps of 10%.

Observed limits at 95% CL on $H_L^{\pm\pm}$ mass vary from 770-870 GeV (850 GeV expected) and from 660-760 GeV (730 GeV expected) for $H_R^{\pm\pm}$, under $Br(H^{\pm\pm} \rightarrow l^{\pm}l^{\pm})=100\%$ assumption.

Giulia Ucchielli, University of Bologna and INFN

Venezia, EPS 2017