

Generalized Gounaris-Sakurai formula and $\rho^0(770)$, $\rho^0(1450)$ and $\rho^0(1700)$ masses and widths

Erik Bartoš*

Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia *E-mail*: erik.bartos@savba.sk

Stanislav Dubnička

Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia E-mail: stanislav.dubnicka@savba.sk

Anna-Zuzana Dubničková

Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia E-mail: dubnickova@fmph.uniba.sk

Robert Kamiński

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland E-mail: robert.kaminski@ifj.edu.pl

Andrej Liptaj

Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia E-mail: andrej.liptaj@savba.sk

It is demonstrated that Gounaris-Sakurai model of the pion electromagnetic form factor is based on the P-wave iso-vector $\pi\pi$ scattering phase-shift given by a generalized effective-range formula of the Chew-Mandelstam type, valid exclusively only at the elastic region up to 1 GeV^2 . Therefore the Gounaris-Sakurai model is justified to be used in a determination of the ρ (770) meson parameters from existing data, however, in no case in a determination of the inelastic ρ (1450) and ρ (1700) resonance parameters.

We propose the pion electromagnetic form factor model found on the analyticity in the complex energy plane in which all three resonances $\rho(770)$, $\rho(1450)$, $\rho(1700)$ are defined on equal level as poles on unphysical sheets of the corresponding Riemann surface. The $\rho(770)$ meson parameters obtained in a such way coincide with the parameters obtained in the framework of the GKPY Roy-like equations analysis.

The European Physical Society Conference on High Energy Physics 5-12 July Venice, Italy

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

Generalized Gounaris-Sakurai formula and $\rho^0(770)$, $\rho^0(1450)$ and $\rho^0(1700)$ parameters

1. Methodology and results

The cleanest determination of the ρ -meson family parameters comes from $e^+e^- \rightarrow \pi^+\pi^$ process [1], whereby

$$\sigma_{tot}(e^{+}e^{-} \to \pi^{+}\pi^{-}) = \frac{\pi\alpha^{2}}{3t}\beta_{\pi}^{3} \Big| F_{\pi}^{\text{EM},I=1}(t) + Re^{i\Phi} \frac{m_{\omega}^{2}}{m_{\omega}^{2} - t - im_{\omega}\Gamma_{\omega}} \Big|^{2}, \qquad (1.1)$$

$$\Phi = \operatorname{atan} \frac{m_{\rho}\Gamma_{\rho}}{m_{\rho}^{2} - m_{\omega}^{2}}, \quad R = 6 \frac{\Gamma_{\omega \to 2\pi}^{1/2}\Gamma_{\omega \to e^{+}e^{-}}^{1/2}}{\alpha m_{\omega}\beta_{\pi}^{3/4}}.$$

A number of theoretical properties of $F_{\pi}^{\text{EM},l=1}(t)$ simplifies investigations of existing data (the most precise up to now are in [2, 3]) to be commonly presented in the form of $\sigma_{tot}(e^+e^- \rightarrow \pi^+\pi^-)$.

First we pay the attention to parameters [1] $m_{\rho} = 775.26 \pm 0.25 \text{ MeV}$; $\Gamma_{\rho} = 149.1 \pm 0.8 \text{ MeV}$ resonance ρ (770), which for the most part have been specified analysing the pion EM FF by means of the extensively quoted Gonaris-Sakurai model [4] to be found by assuming that for a wide elastic energy region ($t < 1 \text{ GeV}^2$) the P-wave iso-vector $\pi\pi$ scattering phase shift $\delta_1^1(s)$ satisfies a generalized effective-range formula of the Chew-Mandelstam type [5]

$$q^{3}/\sqrt{t}\cot{\delta_{1}^{1}(t)} = a + bt + h(t), \qquad h(t) = \frac{2}{\pi}\frac{q^{3}}{\sqrt{t}}\ln{\left(\frac{\sqrt{t}+2q}{2}\right)},$$
 (1.2)

where $q = \sqrt{\frac{t-4}{4}}, m_{\pi} = 1.$

On the other hand, defining ρ (770) resonance as a pole on unphysical sheets of the Reimann surface and exploiting all known theoretical properties of the pion EM FF, the Unitary & Analytic (U&A) model has been constructed [6] on the four sheeted Riemann surface, which analysing existing data on $e^+e^- \rightarrow \pi^+\pi^-$ process produces the ρ (770)-meson parameters $m_{\rho} = 763.85 \pm 0.20 \text{ MeV}$; $\Gamma_{\rho} = 144.18 \pm 0.10 \text{ MeV}$ to be lower in comparison with the parameters obtained by the Gounaris-Sakurai expression.

Which of these sets of ρ (770)-meson parameters are correct?

For a solution of this puzzle the fully solvable mathematic problem, elaborated in [7, 8], is applied.

The latter method provides the ρ (770)-meson parameters from up to now the most precise P-wave iso-vector $\pi\pi$ scattering phase shift data (see Fig. 1) with theoretical errors, which is generated from all existing data on $\delta_1^1(t)$ by the Garcia-Martin-Kamiński-Peláez-Yndurain Roy-like equations with imposed crossing symmetry condition.

The analyticity of $F_{\pi}(t)$ in *t*-plane with $F_{\pi}(t)|_{|t|\to\infty} \sim t^{-1}$ (through Cauchy formula) allows to derive dispersion relation with one subtraction at t = 0, which in combination with the elastic $F_{\pi}(t)$ unitarity condition leads to phase representation with one subtraction

$$F_{\pi}(t) = P_n(t) \exp\left[\frac{t}{4} \int_4^{\infty} \frac{\delta_1^1(t)}{t'(t'-t)} dt'\right].$$
(1.3)

As the $t = 4m_{\pi}^2$ is a square-root type, by means of $q = \sqrt{\frac{t-4}{4}}$, two-sheeted Riemann surface of $F_{\pi}(t)$ is mapped into one q-plane in elastic region of which $F_{\pi}(q)$ has only "poles" and "zeros".

Figure 1: GKPY phase shift $\delta_1^1(s)$ data and the fits of Gounaris-Sakurai model (left) and our 5-parametric model of $\delta_1^1(s)$ (right).

Such considerations lead to the model independent $\delta_1^1(t)$ phase representation

$$\delta_1^1(q) = \arctan \frac{A_3 q^3 + A_5 q^5 + \dots}{1 + A_2 q^2 + A_4 q^4 + \dots}$$
(1.4)

 $A_1 \equiv 0$ in order to secure the threshold behaviour of $\delta_1^1(q)$. An optimal description (the full line in Fig. 1) is achieved with nonzero coefficients A_2, A_3, A_4, A_5 with $\chi^2/\text{ndf} = 0.0244$.

Substituting an equivalent form to (1.4)

$$\delta_1^1(q) = \frac{1}{2i} \ln \frac{(1 + A_2 q^2 + A_4 q^4) + i(A_3 q^3 + A_5 q^5)}{(1 + A_2 q^2 + A_4 q^4) - i(A_3 q^3 + A_5 q^5)}$$
(1.5)

into (1.3), one finds an explicit algebraic form of $F_{\pi}(q)$ and from it $m_{\rho} = 763.56 \pm 0.51$ MeV and $\Gamma_{\rho} = 143.09 \pm 0.82$ MeV.

These values, obtained from $\delta_1^1(q)$ in Fig. 1 by a completely model independent way, unambiguously confirm correctness of the parameters obtained by U&A model of $F_{\pi}(t)$.

An excess of the parameters from Gounaris-Sakurai formula can be naturally explained by the fact, that (1.2), which is a background of the Gounaris-Sakurai formula, is able to describe the data on $\delta_1^1(t)$ optimally only with $\chi^2/\text{ndf} = 2.4499$.

If Gounaris-Sakurai model of $F_{\pi}^{\text{EM},I=1}(t)$ is unable to provide correct values of the elastic $\rho(770)$ -meson parameters, hardly one can expect good results by means of its generalization

$$F_{\pi}(t) = \frac{1}{1+\beta+\gamma} \Big[BW_{\rho(770)}^{GS}(t) \cdot \Big(1 + \delta \frac{t}{m_{\omega}^2} BW_{\omega}(t) \Big) + \beta BW_{\rho(1450)}^{GS}(t) + \gamma BW_{\rho(1700)}^{GS}(t) \Big], \quad (1.6)$$

for excited states $\rho(1450)$ and $\rho(1700)$ far away in inelastic region.

The results for all three ρ' -meson resonances by (1.6) an the U&A $F_{\pi}^{\text{EM},I=1}(t)$ model are presented in Table 1.

	$m_{ ho^0}$ [MeV]	$m_{ ho^{0'}}$ [MeV]	$m_{ ho^{0''}}$ [MeV]
GS.	774.81 ± 0.11	1497.60 ± 1.74	1848.40 ± 4.86
U&A	763.85 ± 0.04	1326.61 ± 3.46	1770.41 ± 5.56
PDG	775.26 ± 0.25	1465.00 ± 25.00	1720.00 ± 20.00
	$\Gamma_{ ho^0}$ [MeV]	$\Gamma_{\rho^{0'}}$ [MeV]	$\Gamma_{\rho 0''}$ [MeV]
GS.		$ \Gamma_{\rho^{0'}} [MeV] $ 441.87± 8.48	$ \Gamma_{\rho^{0''}} [MeV] 322.12 ± 16.03 $
GS. U&A	$ \Gamma_{\rho^0} [MeV] 149.21 ± 0.21 144.18 ± 0.01 $	$ \Gamma_{\rho^{0'}} $ [MeV] 441.87 ± 8.48 325.89 ± 12.30	$ \Gamma_{\rho 0''} $ [MeV] 322.12 ± 16.03 263.51 ± 11.26
GS. U&A PDG	$ \Gamma_{\rho^0} [MeV] $ 149.21±0.21 144.18±0.01 149.10±0.80	$ \Gamma_{\rho^{0'}} [MeV] $ 441.87 ± 8.48 325.89 ± 12.30 400.00 ± 60.00	$ \Gamma_{\rho^{0''}} [MeV] $ 322.12 ± 16.03 263.51 ± 11.26 250.00 ± 100.00

Table 1: Numerical values of masses and widths for ρ -meson resonances for Gounaris-Sakurai, Unitary & Analytic model and PDG average values.

Conclusions

Based on the recent P-wave iso-vector $\pi\pi$ scattering phase-shift data, we showed the limitation of Gounaris-Sakurai model to describe them, in comparison with our model independent way.

In the case of e^+e^- data Gounaris-Sakurai model is valid only in the region below 1 GeV^2 and it cannot be used for higher ρ -meson resonances $\rho(1450)$, $\rho(1700)$ as the received parameters from Gounaris-Sakurai model are higher than in U&A model of π electromagnetic form factor.

We can conclude that our approach independently interprets the data for the phase shift δ_1^1 and cross-section (alias π form factor) data with the similar central value of m_ρ and Γ_ρ , and Gounaris-Sakurai model is applicable only on ρ (770) resonance.

Acknowledgement

We are grateful to EPS-HEP 2017 participants for inspiring questions and remarks. The work was supported in part by VEGA Grant 2/0153/17 and Grant APVV-0463-12.

References

- [1] C. Patrignani et al. Review of Particle Physics. Chin. Phys., C40(10):100001, 2016.
- [2] J. P. Lees et al. Phys. Rev., D86:032013, 2012.
- [3] M. Ablikim et al. Phys. Lett., B753:629-638, 2016.
- [4] G.J. Gounaris and J.J. Sakurai. Phys. Rev. Lett., 21:244-247, 1968.
- [5] G. F. Chew and S. Mandelstam. Phys. Rev., 119:467-477, 1960.
- [6] S. Dubnicka and A. Z. Dubnickova. Acta Phys. Slov., 60:1–153, 2010.
- [7] S. Dubnicka, A. Z. Dubnickova, and A. Liptaj. Phys. Rev., D90(11):114003, 2014.
- [8] S. Dubnicka, A. Z. Dubnickova, R. Kamiński, and A. Liptaj. Phys. Rev., D94(5):054036, 2016.