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Achieving self-consistent simultaneous interpretationsof pions and kaons as bound states of quark

and antiquark and as the (almost) massless boson states related, according to Goldstone’s theorem,

to the dynamical, and explicit, breakdown of the chiral symmetries of QCD still represents a major

challenge. Applying inversion techniques to convenientlysimplified versions of the homogeneous

Bethe–Salpeter equation, governing bound states in quantum field theory, enables us to get along a

straightforward route a qualitative idea of how the underlying effective interaction might look like.
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For ground-state pseudoscalar mesons, their description as quark–antiquark bound states ought
to reflect also their (near) masslessness, demanded by Goldstone’s theorem for bosons related to the
dynamical (and explicit) breaking of the chiral symmetriesof quantum chromodynamics, the theory
of the strong interactions. The underlyingeffectiveinteractions enabling such combined picture can
be elucidated or explored by inversion [1,2] of the Bethe–Salpeter formalism, suitably simplified by
allowing for adequate instantaneous, hence three-dimensional, reductions [3,4]. From the latter, we
may extract information [5–7] in form of configuration-space central potentials [8–10]V(r), r ≡ |x|.

Strictly respectingPoincaré covariance, the homogeneous Bethe–Salpeter equation governing
fermion–antifermion bound states is constructed from an integral kernel that subsumes the effective
interactions responsible for the formation of the bound states and the propagators of the constituents
of the bound states. Its solutions capture the distributionof the relative momenta of the constituents.

In view of evident difficulties to deduce the interaction kernel from quantum chromodynamics,
we suggest to approach some of the information assumed to be encoded therein by applying more or
less standard inversion procedures to sophisticated simplifications of the Bethe–Salpeter formalism,
cast, for reasonably trivial dependence of kernel [11] and propagators [3] on the time components of
all relevant momenta and flavour-, Fierz- and spherically symmetric interactions, into a bound-state
problem for the Bethe–Salpeter solution’s radial components. Onlyoneof the latter, denoted byϕ2,
matters forpseudoscalarmesons. Knowledge of solutions then sheds light on the basicinteractions.

Invariance of a quantum field theory under gauge transformations entails identities which relate
this theory’s Green functions. In the chiral limit, one suchidentity connects [5,12] quark propagator
and Bethe–Salpeter solution for a zero-mass pseudoscalar meson in its center-of-momentum frame.

Owing to Poincaré covariance, justtwoLorentz-scalar functions characterize the propagator of
a quark (of four-momentump), its massM(p2) and its wave-function renormalizationZ(p2), which
we take from a solution [13] of this quark propagator’s Euclidean-spaceequation of motion (Fig. 1).
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Figure 1: Euclidean quark propagator functions in chiral limit:M(k) (left) andZ(k) (right) vs.k≡
√

k2 [14].

Inserting the propagator functions’ behaviour plotted in Fig. 1 into the aforementioned identity
opens the path [8] to the ground-state solutionϕ2(p), with radial variablep≡ |p|, andϕ2(r) (Fig. 2).
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Figure 2: Nonzero Salpeter component in momentum [ϕ2(p), left] and configuration [ϕ2(r), right] space [8].

Our bound-state equation in configuration space then yieldsthe potentialV(r). This potential’s
unexpected square-well shaperesemblancewe consider as this exercise’s truequintessence(Fig. 3).
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Figure 3: Configuration-space central potentialV(r) [8], arising from a chiral-limit quark propagator [13,14]
as input by inverting our three-dimensional bound-state equation [3] with Fierz-symmetric interaction kernel.

Not surprisingly, a brief scrutiny with the naked eye reveals [8] that the ground-state solution of
our three-dimensional bound-state equation with potential V(r) fixed by inversioninevitablyentails
a reasonable size of the pion: its average interquark distance,〈r〉= 0.483 fm, and root-mean-square
radius,

√

〈r2〉= 0.535 fm, predicted by the starting pointϕ2(r) of our inversion approach match the
experimentally determined value of its electromagnetic charge radius,

√

〈r2
π〉=(0.672±0.008) fm.
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Consistency of our inversion results can be established by numerically solving, for the effective
interaction potential derived thereby, the bound-state equation either variationally (Fig. 4, left) or by
expansion over a suitable basis of function space (Fig. 4, right). Our approach passes, of course, this
test with flying colours. In both cases, the overlap of wave-function input and outcome equals unity.
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Figure 4: Actual ground-state solutions(dotted)to our three-dimensional bound-state equation [3], obtained
straightforwardly by application of variational techniques [ϕ2(r), left] or a conversion to an equivalent matrix
eigenvalue problem [ϕ2(p), right], vs. the initial Salpeter component(dashed), this inversion’sstarting point.
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