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A novel higher-level flavour tagging algorithm called DL1 has been developed using a neural
network at the ATLAS experiment [1] at the CERN Large Hadron Collider (LHC). We have in-
vestigated the potential of Deep Learning in flavour tagging using inputs from lower-level taggers.
A systematic grid search over architectures and the training hyperparameter space is presented.
In this novel neural network approach, the training is performed on multiple output nodes, which
provides a highly flexible tagger. The DL1 studies presented show that the obtained neural net-
work improves discrimination against both light-flavour-jets and c-jets, and also provides a better
performing c-tagger. The performance for arbitrary background mixtures can be adjusted after
the training according to the to the needs of the physics analysis. The resulting DL1 tagger is
described and a detailed set of performance plots presented, obtained from simulated tt events at√
(s)=13 TeV and the Run-2 data taking conditions where this tagger will be applied.
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1. Introduction to ATLAS Flavour Tagging and Motivating Neural Networks

Flavour Tagging in ATLAS targets the tagging of jets originating from a b- or c-hadron, i.e. b-
and c-jet tagging. A deep neural network (NN) may be better able to exploit correlations between
flavour tagging input variables than the BDT approach currently used for flavour tagging in ATLAS.
The application to the separation of charm and light-flavour jets is of particular interest in the case
of c-tagging. Dedicated algorithms which use track and cluster information provide the inputs
which are then used by higher level algorithms along kinematic variables. The current baseline for
such a higher level algorithm is based on a BDT approach (MV2).

The dedicated algorithms [2] can be grouped into three main categories: Impact Parameter (IP)
based, Secondary Vertex (SV) based or muon based. The lower level taggers that are IP based are
IP2D, IP3D and RNNIP. IP2D and IP3D provide discriminants build from the log-likelihood ratios,
using flavour hypotheses computed from summed track contributions extracted from simulation-
derived templates using information from the transverse and longitudinal impact parameter signif-
icances respectively. RNNIP is a parallel approach which feeds raw tracks into a Recurrent Neural
Network (RNN) and exploits correlations between the tracks. The SV based lower level inputs are
SV1 and JetFitter. SV1 reconstructs inclusive secondary vertices. JetFitter exploits the topological
structure of weak b- and c-hadron decays inside the jet by approximating the b-hadron or c-hadron
flight path with Primary Vertex, SV and tertiary vertex using a Kalman filter. Jet kinematics and
information on muons produced in b/c decays is also used.

2. DL1 higher level tagger: Design and optimisation procedure

Before the training, to avoid discrimination based on kinematic differences between signal
and background, the kinematic 2D (η , pT ) distributions per jet flavour have been reweighted to the
kinematics distributions of the b-jet distribution. The weights from this reweighting are then used
in the backpropagation update. Defaults values of the NN inputs should not disturb the learning
process on physical values and are therefore set to the mean of the distribution and flagged with
binary check variables.

During training, the Adaptive Momentum (Adam) optimiser was used to minimise the categor-
ical cross-entropy loss. The rectified linear unit was used as activation function for the intermediate
layers except for the output layer where the softmax function was used to constrain the prediction
range. Combining Maxout and simple fully-connected layers showed to work better than fully
connected layers only. Dropout was added for regularisation and to prevent overtraining. Batch-
Normalisation was included to minimise the internal covariate shift.

After training, the NN outputs are combined into a single discriminant using a log-likelihood
combination, defining the signal and weighting the background contribution. This allows to use
the same net for b- as well as for c-tagging and to tune the background rejection after training. The
dimensionality reduction uses the log-likelihood ratio of the signal prediction over background
prediction ratio using the signal and output nodes in combination with a variable fraction setting
the relative background weighting, see equations 2.1 and 2.2 respectively.

DL1cfc−jets = ln
(

pb

fc−jets ·pc +(1− fc−jets) ·plight−flavour

)
(2.1)
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DL1bfb−jets = ln
(

pc

fb−jets ·pb +(1− fb−jets) ·plight−flavour

)
(2.2)

Building upon the methods described previously for stabilising and improving the learning
process, and preventing overtraining, a systematic grid search has been performed on the number
of hidden layers, the number of nodes in the hidden layers, the sequencing of Maxout and Dense
layers as well as the learning rate. The optimisation of the training parameters is based on empirical
results. During training the loss development is monitored to check for the reduction of the overall
loss as well as overtraining.

3. Performance improvements

The DL1 final discriminant allows the composition of the background to be changed by vary-
ing fc−jets in case of b-tagging or fc−jets in case of b-tagging. By scanning over the range of possible
values for these parameters, iso-efficiency curves using a fixed cut provide a figure of merit. The
tuning of the final background weighting is done by looking at the dependence of the performance
on the kinematics.
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Figure 1: DL1 performance for b-tagging [2].

The b-jet tagging performance, see Figure 1, is generally competitive. Keeping e.g. the b-
jet tagging efficiency fixed at 77% and the light-flavour-jet rejection fixed at 101, the gains when
moving from MV2 to DL1 are about 9% with a strong dependence on the underlying pT spectrum.
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Figure 2: DL1 performance for c-tagging [2].

For c-jet tagging, the improvements, see Figure 2, are significantly larger and a similar de-
pendence of the performance on the transverse momentum is observed. Keeping the c-jet tagging
efficiency fixed at 25% and the b-jet rejection fixed at 16, the improvements are about 110%. For
40% c-tagging efficiency and a b-jet rejection of 4, the improvement in light-flavour-jet rejection is
about 65%.

4. Data vs Monte Carlo comparison
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Figure 3: Data-MC comparisons of the log-likelihood ratio used to discriminate the b- from the
light-flavour jet hypothesis in the IP3D algorithm using the tt and Z sample [2].

The data/MC comparisons of the inputs use a dileptonic tt sample with at least one W → eµ as
well as a Z→ µ+µ−+jets sample. The checks include no systematics evaluation yet and the ratio
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plots show only a statistical error. One exemplary variable of the IP3D algorithm, see Figure 4, is
found to be well modelled within 30% with some localised differences for low and high values for
both of these samples.
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Figure 4: Data/MC comparisons for the DL1 b-tagging using the tt and Z sample [2].

The same samples are used to study the Data/MC agreement for DL1. The DL1 final discrim-
inant, see Figure 4, exhibits good separation and the simulation describes the data within 20% with
some localised differences for low and high values.

5. Conclusions

A novel flexible higher level tagger has been presented which shows improvements in b- and
c-jet tagging and is ready to be used on 2017 data. Validation studies are in progress but preliminary
comparisons of MC to data are promising.
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