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Highly excited or high-temperature string gases are dominated by long strings. The avatar of this
process on the thermal manifold is the singly wound state (thermal scalar) that becomes mass-
less at the critical Hagedorn temperature. This logic can be extended to curved spacetime, and
in particular to Rindler space where one finds that the Hagedorn temperature equals the Hawk-
ing temperature of the black hole itself. This results in a long random walk surrounding the
event horizon localized at string length distance. Long strings also make their appearance when
throwing in strings into the black hole as shown by Susskind long ago. The string elongates as
it approaches the horizon. We combine and compare these two pictures to discuss how the ther-
mally equilibrated long string gas accounts for the black hole entropy, and provide a qualitative
picture for Hawking radiation.
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The long string at the stretched horizon and the entropy of large non-extremal black holes Henri Verschelde

1. Introduction and Motivation

It is known since the 80’s that high energy strings tend to coalesce and form fewer long strings
instead. This can be demonstrated from simple entropic arguments. More sophisticated arguments
utilize a thermal ensemble of strings, where long string dominance was also demonstrated. An
at first sight unrelated context where long strings appear naturally occurs when throwing strings
into a black hole. As shown by Susskind [1], strings elongate due to having only a finite detector
resolution: the string’s internal fluctuations slow down according to asymptotic observers and one
effectively ’sees’ more of the string.
These two origins of long strings (high excitation and finite detector resolution) can be nicely sum-
marized into a formula for the transverse length of a closed string in d flat spacetime dimensions:

`≡ 〈N, N̄|
∫ 2π

0
dσ

√√√√∣∣∣∣∣∑i

∂X i
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√
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+∞

∑
n=1

n+N + N̄, (1.1)

the first term requires a cut-off and is insensitive to string excitation. The second part is the high
energy contribution: `∼

√
α ′N ∼ Eα ′.

As well-known, the thermal manifold carries the same information as the real-time thermal en-
semble. From that perspective, the long string regime is contained within the string state that is
singly wound around the thermal circle, the thermal scalar. It becomes massless and dominates
thermodynamics at high temperature when β ≈ βH = 2

√
2π
√

α ′ (type II), the (inverse) Hagedorn
temperature. We apply this perspective of the thermal scalar to Rindler space, the near-horizon
approximation to generic black holes, and will find long strings close to horizons.

2. The thermal scalar in Rindler space

The thermal scalar action in Rindler space ds2 = a2ρ2dt2 +dρ2 +dx2
⊥ is [2][3][4]
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]
. (2.1)

At β = βR = 2π/a, the Rindler temperature, the lowest eigenmode of this action becomes
a (normalizable) zero-mode concentrated around ρ ∼

√
α ′: φ0 ∼ exp

(
− ρ2

2α ′

)
. This means the

Hagedorn temperature in this space equals the Rindler temperature; and the thermal scalar describes
the long string as a random walk. It dominates the free energy and the density of states:

βF =−
∫ +∞

0

dE
E

e
2πE

a e−βE , ρ(E) =
eβRE

E
. (2.2)

In the microcanonical ensemble, the dominant contribution at very high energy E of the energy
density ε(ρ) and radial pressure p(ρ) of the string gas are given by [5]

ε(ρ) = 2
E

Aaα ′

(
2ρ2

α ′
−1
)

e−ρ2/α ′ , p(ρ) = 2
E

Aaα ′
e−ρ2/α ′ , (2.3)

with A the horizon area. For a Rindler observer, this entropic pressure gradient keeps the long
strings from falling arbitrarily close towards the horizon. In this way, a stretched horizon of long
strings is formed which realizes the picture of Susskind [1].
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3. Entropy of large non-extremal black holes

The above conclusion can be used to derive the Bekenstein-Hawking entropy from long strings
[6]. Close to the horizon, a large non-extremal black hole is described by a Rindler metric with
acceleration a = 1/4GM. If we throw a shell of mass δM � M from infinity, the shell has a
Hagedorn density of states of the form of (2.2): ρ(δM) ∼ eβHawkingδM/δM, with the Hagedorn
temperature equal to the Hawking temperature. This is an equilibrium formula, which can only
happen in string theory. In QFT, any finite energy configuration that is thrown into the black
hole will perpetually fall in and will never reach thermal equilibrium with the black hole. This is
reflected in the fact that in QFT the horizon causes UV divergences in thermal observables. One
interpretation of this is that in the εUV → 0 limit, only an infinite amount of QFT matter can reach
a radial equilibrium profile.
A related observation was made by Susskind: in tortoise coordinates, QFT wavepackets propagate
undeformed towards the horizon at tortoise r∗ =−∞. This means the packets shrinks radially, due
to the unlimited amount of storage space for fields close to the horizon. Strings on the other hand
spread longitudinally at precisely such a rate that compensates their forward propagation speed:
the string is seen to hover outside the horizon at a distance scale ∼ `s.
From the above Hagedorn density of states, the shell adds an entropy of δS = βHawkingδM which
integrates to the Bekenstein entropy:

δS = 8πGMδM → SBH =
A

4G
. (3.1)

4. A comment on Hawking radiation

In flat space a highly excited string radiates zero-mass particles as a black body at the Hagedorn
temperature [7]. Since the string gas in Rindler space (close to the black hole horizon) is dominated
by a single long string with Hagedorn temperature = Hawking temperature, it will radiate as a black
body at the Hawking temperature, providing a microscopic mechanism for Hawking radiation.
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