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1. Introduction

We are motivated by the large gluon occupations at the LHC and its potential to
explore the physics of gluon saturation. The inclusive photon production cross section was
measured in p+p collisions by ATLAS [1] (

√
s= 7 TeV) and CMS [2, 3, 4] (

√
s= 2.76 TeV

and 7 TeV) up to photon rapidity |ηγ | ≤ 2.5, partially covering also the region x < 0.01
where deviations to the photon spectrum from the collinear perturbative QCD results,
and due to the effect of saturation of gluons, are expected. The latter is described by the
Color Glass Condensate (CGC) effective field theory (EFT) wherein the gluon distributions
become transverse momentum dependent and strongly modified in the infrared, at around
the saturation scale QS .

We have used the CGC EFT and applied it to inclusive photon production: p + p→
γ +X. We used the dilute-dense framework where all-order rescatterings on the dense
target, together with its non-linear quantum evolution effects, are taken into account, so
that the forward collision region probes the small-x content of the target proton.

The leading-order (LO) contribution comes from the q → qγ channel (in the target
background). The main formula for the inclusive cross section is given as [5, 6, 7, 8] (with
recent applications in [9])

dσLO

d2kγ⊥dηγ
= S⊥

∑
f

αeq
2
f

16π2

∫
q⊥

∫ 1

xp,min
dxp fval

q,f (xp,Q2)Ñt,Yt(q⊥+kγ⊥)

× 1
q+l+

{
−4m2

f

[
l+2

(q ·kγ)2 + q+2

(l ·kγ)2 +
k+2
γ

(l ·kγ)(q ·kγ)

]

+ 4
(
l+2 + q+2

)[ l · q
(l ·kγ)(q ·kγ) + 1

q ·kγ
− 1
l ·kγ

]}
,

(1.1)

where fval
q,f (xp,Q2) is the valence quark distribution so that the sum runs over the valence

f = u,d flavors only. For consistency reasons we are taking only the valence content at LO,
whereas the sea quark contribution is taken into account by the g→ qq̄γ NLO channel to
be discussed below. The distribution of gluons in the target is described by a fundamental
Wilson line dipole Ñt,Yt(k⊥). For further details see also [10].

At NLO we take into account the g→ qq̄γ [11] channel as dominating the mid-rapidity
region over the remaining q→ qgγ [12] and g→ q∗q̄∗→ γ [13] channels also present at this
order. The inclusive cross section is given as [11] (see also [10])

dσNLO

d2kγ⊥dηγ
= S⊥

∑
f

αeαSN
2
c q

2
f

64π4(N2
c −1)

∫
ηqηp

∫
q⊥p⊥k1⊥k⊥

ϕp(Yp,k1⊥)
k2

1⊥
Ñt,Yt(k⊥)Ñt,Yt(P⊥−k1⊥−k⊥)

×
[
2τg,g(k1⊥;k1⊥) + 4τg,qq̄(k1⊥;k⊥,k1⊥) + 2τqq̄,qq̄(k⊥,k1⊥;k⊥,k1⊥)

]
,

(1.2)

at large Nc. Here ϕp(Yp,k1⊥) is the unintegrated gluon distribution (UGD) in the projectile
proton and the sum

∑
f runs over f = u,d,s,c,b flavors in our computation.
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2. Calculation setup and numerical results

For the parton distribution functions (PDFs) we use the central CTEQ6M set [14].
The gluon UGD of the proton is fixed by its relation to the adjoint dipole: ϕp(Yp,k1⊥) =
S⊥Nck

2
1⊥Np,Yp(k1⊥)/4αS . The gluon dipoles are evolved according to the running cou-

pling Balistsky-Kovchegov equation (rcBK) [15, 16], with the initial condition set by the
McLerran-Venugopalan (MV) model [17] at x = 0.01 that provides a good description of
the J/Ψ production in p+p [18]. The region x > 0.01 is fixed by the matching to the gluon
PDF as in [18]. For the quark masses we took mu = md = 0.005 GeV, ms = 0.095 GeV,
mc = 1.3 GeV and mb = 4.5 GeV. We have varied their values according to their current
experimental uncertainties leading to about 10% deviations in the cross section that is
taken into account as a part of our systematics.

We calculate the spectrum of isolated photons that is obtained by applying an isolation
cone R as

θ
(√

(ηγ−η)2 + (φγ−φ)2−R
)
, (2.1)

with η and φ being the rapidity and the azimuthal angle of the quark. This constraint
suppresses collinear emissions within the hadron jets such as decay photons but also frag-
mentation photons.
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Figure 1: Fraction of the inclusive photon cross section from the NLO gg→ qq̄γ channel relative
to the total NLO+LO contribution, as a function of kγ⊥ for different collision energies (left panel)
and different ηγ (right panel).

In the following we show the numerical results based on the LO and NLO contributions
described in the previous section and compare with the relevant experimental data. The
LHC data from CMS and ATLAS account for photons with kγ⊥ ∼ 20 GeV. We have
numerically established [10] that at such transverse momenta the full-CGC formula (1.2)
is already well approximated by its k⊥-factorized form1

dσNLO
k⊥-fact

d2kγ⊥dηγ
= S⊥

∑
f

αeαSN
2
c q

2
f

64π4(N2
c −1)

∫
ηqηp

∫
q⊥p⊥k1⊥

ϕp(Yp,k1⊥)
k2

1⊥
Nt,Yt(P⊥−k1⊥)

×
[
2τg,g(k1⊥) + τq,q(k1⊥) + τq̄,q̄(k1⊥) + 2τg,q(k1⊥) + 2τg,q̄(k1⊥)

]
.

(2.2)

1k⊥-factorization becomes broken at lower kγ⊥: at around kγ⊥ ∼ 1 GeV the breaking is about 10%, see
[10].
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With this observation the rest of the results will be presented using (2.2).
On Fig. 1 we show the fractional contribution of the NLO cross section to the full

LO+NLO result with varying the collision energy (left panel) and photon rapidity (right
panel) using the isolation cut R = 0.4. Whereas at the

√
s = 0.2 TeV RHIC energy NLO

provides a correction to the full cross section, the increase to the LHC energy marks
the NLO contribution to more than 60% at 2.76 TeV and more than 90% at 7 TeV and
13TeV. Similar trends are found when moving from the mid-rapidity to the forward photon
rapidities.

20 25 30 35 40 45 50
k (GeV)

10 1

100

d
/d

k
(n

b/
Ge

V)
 

| | < 1.44

s = 2.76 TeV
R = 0.4

CMS

15 20 25 30 35 40 45 50
k (GeV)

10 2

10 1

100

101

d
/d

k
(n

b/
Ge

V)
 

0.6 < | | < 1.37
1.57 < | | < 2.1 (× 0.5)
2.1 < | | < 2.5 (× 0.1)

s = 7 TeV
R = 0.4

ATLAS
CMS
CMS

Figure 2: Comparison to the p+p photon data at
√
s= 2.76 TeV (left panel, CMS [2]) and

√
s= 7

TeV (right panel, ATLAS [1], CMS [4] across several rapidity bins. The central lines are obtained
with a K-factor of K = 2.4.

The left panel on Fig. 2 gives a comparison to the CMS data at 2.76 TeV [2] where we
find a good agreement by using an overall K-factor of K = 2.4. On right panel Fig. 2 we
compare with the ATLAS [1] and CMS [4] data at 7 TeV; a good agreement is found using
the same K = 2.4.

3. Conclusions

We have for the first time numerically computed the CGC NLO g → qq̄γ contribu-
tion to inclusive photon production p + p→ γX. We have found that the NLO channel
dominates by more than 90% over the LO qg→ qγ channel at the

√
s= 7 TeV and 13 TeV

energies. Our results demonstrate fair agreement with the available LHC data. Working
still within the dilute-dense formalism our formulas are suitable for future applications of
photon production in p+A collisions where the saturation effects are expected to be more
pronounced.
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