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We discuss the γ → ρ0 impact factor, i.e., the transition amplitude of a photon to a neutral vector
meson ρ0, where the transition is mediated by the two t-channel gluons. The impact factor is a
building block in the QCD descriptions of high-energy exclusive processes like γ p→ ρ0 p, and
γγ→ ρ0ρ0, in particular, for the forward production of ρ0. The impact factor for the longitudinal
polarization of the vector meson obeys the QCD factorization, while the factorization is known to
break down for the transverse polarization, indicating that the impact factor for the transversely
polarized vector meson is dominated by the “non-factorizable” soft contributions. We study the
γ → ρ0 impact factor constructing the light-cone QCD sum rules for the corresponding ampli-
tudes, which allow us to estimate the relevant soft contributions in a largely model-independent
way, with the use of dispersion relations and quark-hadron duality.
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γ → ρ0 impact factor in QCD Kazuhiro Tanaka

1. Introduction

In the framework of QCD factorization, the impact factor is expressed as a convolution of
the partonic amplitude, γg→ qq̄g, in perturbation theory and the quark-antiquark light-cone dis-
tribution amplitudes for a vector meson ρ0. The corresponding factorization formula has been
successfully derived for the case of the longitudinal polarization of ρ0. For the transverse polar-
ization of ρ0, however, the corresponding formula is associated with the higher twist (twist-three)
contributions and the factorization is known to break down due to infrared divergences which man-
ifest themselves as endpoint singularities arising in the convolution integral; the impact factor for
the transversely polarized vector meson is dominated by the “non-factorizable” soft contributions.

We study the γ → ρ0 impact factor constructing the light-cone QCD sum rules for the corre-
sponding amplitudes, with the use of dispersion relations and quark-hadron duality. As a result, we
are able to obtain the finite result for the impact factor with the transversely polarized ρ0 meson,
which we denote as “ρ0

T ”, as well as for ρ0
L with the longitudinal polarization. We compare our re-

sults with the approach based on the vector meson dominance model associated with the pomeron
exchange. As an application, we calculate the cross sections for ρ0ρ0 production in two-photon
collisions, in particular, the cross sections for γγ→ ρ0

Lρ0
T , i.e., the production of the two ρ0 mesons

with different (longitudinal and transverse) polarizations, where each ρ0 meson is produced in the
forward direction of each photon beam. This may be measured in, e.g., Belle II experiment.

2. Impact representation for γγ →VV

An example of the high-energy exclusive processes, where the γ→V impact factor (V denotes
a neutral vector meson, V = ρ0,ω,φ , . . .) arises as a building block in their QCD descriptions, is
γγ → VV as represented in Fig. 1 of [1], and the impact factor is the transition amplitude of a
photon to V , with the transition being mediated by the two t-channel gluons. As demonstrated in
Appendix A of [1], the leading contribution to the amplitude of γγ→VV for the forward production
of the vector mesons at high energy, i.e., at s�−t� Λ2

QCD, obeys the “impact representation”,

Mγγ→VV = is
∫ J(1)

γV (kkk⊥,∆∆∆⊥)J
(2)
γV (−kkk⊥,−∆∆∆⊥)

kkk2
⊥(kkk⊥−∆∆∆⊥)2

d2k⊥
(2π)2 , (2.1)

up to the corrections suppressed by powers of 1/s, where s = (q1 + q2)
2 = 2q1 · q2, with q1, q2

being the 4-momenta of the two colliding photons (q2
1 = q2

2 = 0), and t = ∆2 =−(s/2)(1− cosθ),
with ∆µ and θ being the associated 4-momentum transfer and center-of-mass scattering angle. The
kinematics to allow the final-state vector mesons, with (q1 +∆)2 = m2

V and similarly for q2−∆,
implies t ' −∆∆∆

2
⊥; then, the propagators of the two t-channel gluons give the denominator of (2.1)

for the dominant integration region corresponding to k2
0−k2

3� kkk2
⊥, and each of the two parts of the

γ →V transition, interconnected by those gluons, is given by the impact factor J(1)
γV (J(2)

γV ), as

J(1)
γV (kkk⊥,∆∆∆⊥) = −i

∫
∞

−∞

dαk

2π

qµ

2 qν
2

s
Aµν (γ(q1)g(k)→V (q1 +∆)g(k−∆))

∣∣∣∣
βk→0

, (2.2)

using the photon-gluon (γg) scattering amplitude, Aµν (γ(q1)g(k)→V (q1 +∆)g(k−∆)), produc-
ing the vector meson V in the final state; here µ (ν) is the Lorentz index for the initial (fi-
nal) gluon and the Sudakov variables are introduced for the momentum of the initial gluon as
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k = αkq2 + βkq1 + k⊥. As indicated explicitly in (2.2), the leading term in the Taylor expansion
with respect to βk leads to the leading contribution in powers of 1/s. The integral over αk of (2.2) is
performed by closing the integration contour at the lower half-plane and yields the discontinuity of
the integrand. J(2)

γV (−kkk⊥,−∆∆∆⊥) is given by (2.2) with the formal substitutions, q1↔ q2, αk ↔ βk,
k → −k, and ∆→ −∆. The contraction with qµ

2 qν
2/s in (2.2) and the similar contraction with

qλ
1 qσ

1 /s, arising in J(2)
γV , come from the decomposition of the metric tensor in the numerator of the

gluon propagators into the lightlike and orthogonal directions as gµλ = (2/s)(qµ

2 qλ
1 +qλ

2 qµ

1 )+gµλ

⊥
and making the replacement, gµλ gνσ → (2/s)qµ

2 qλ
1 (2/s)qν

2 qσ
1 , to project onto the leading contri-

bution for large s. We note that (2.2) thus obtained is independent of s, as emphasized in [1].
The averaging for the color indices a,b of the initial and final gluons is assumed using (λ a/2)×

(λ b/2)→ δ ab/(2Nc) in (2.2), as well as in J(2)
γV , with λ a being the corresponding color Gell-Mann

matrices for Nc color, such that the two gluons are projected onto the colorless t-channel state,
which may correspond to QCD pomeron with the vacuum quantum numbers. As well known, the
impact factor (2.2) plays roles also in other high-energy processes, such as γ p→V p, producing a
vector meson in the forward direction.

3. QCD factorization for γ → ρ0 impact factor

The high-energy γg scattering amplitude Aµν (γ(q1)g(k)→V (q1 +∆)g(k−∆)) of (2.2) re-
ceives the contribution of the partonic amplitude, γg→ qq̄g, in perturbation theory as expressed
in Fig. 2 of [1], and its convolution with the nonperturbative hadronization process of qq̄ into V ,
which is represented by the quark-antiquark light-cone distribution amplitudes (DAs) for the vector
meson V , provides the QCD factorization formula for the impact factor (2.2). The corresponding
formula, with the final-state ρ0 meson being longitudinally polarized (“ρ0

L”), was calculated in [1],
and it is straightforward to extend the result for the case with the replacement γ(q1)→ γ∗(q) with
q = q1−(Q2/s)q2, such that the the initial-state photon has the virtuality q2 ≡−Q2 (< 0), as [2, 3],

J(1)
γ∗ρ0

L
(kkk⊥,∆∆∆⊥)

∣∣∣
LO

=
√

4παem 4παs
δ ab

2Nc

fρ√
2

∫ 1

0
duφ‖(u)

2u−1
2

{
eeeγ ·∆∆∆⊥

u∆∆∆
2
⊥+(1−u)Q2

−
eeeγ ·∆∆∆⊥

(1−u)∆∆∆
2
⊥+uQ2

−
eeeγ · (u∆∆∆⊥− kkk⊥)

(u∆∆∆⊥− kkk⊥)
2 +u(1−u)Q2

+
eeeγ · [(1−u)∆∆∆⊥− kkk⊥]

[(1−u)∆∆∆⊥− kkk⊥]
2 +u(1−u)Q2

}
, (3.1)

in the leading order (LO) in QCD perturbation theory, where eµ

γ = (0,eeeγ) denotes the polarization
vector of γ∗(q), which is assumed, here and in the following, to be transversely polarized, and
we follow the definition of the decay constant fρ and the DA φ‖(u) for the ρ meson given in [4],
with u and 1−u denoting the longitudinal momentum fraction carried by the quark and antiquark,
respectively. We may also calculate similarly the impact factor with the virtual photon γ∗(q) and
the transversely polarized ρ0

T , as J(1)
γ∗ρ0

T
(kkk⊥,∆∆∆⊥)

∣∣
LO, whose formula is formally similar to (3.1), but,

instead of φ‖(u), the corresponding DAs for the transversely polarized ρ0
T participate, and these are

actually the two independent DAs of twist three, g(v)⊥ (u) and g(a)⊥ (u); see [4] for their definitions and
properties in QCD. It is worth noting that φ‖(u) in (3.1) is the twist-two DA for the longitudinally
polarized ρ0

L and we have another twist-two DA, φ⊥(u), for ρ0
T [4]. However, because φ⊥(u) is of

chiral-odd, its contribution to J(1)
γ∗ρ0

T
(kkk⊥,∆∆∆⊥)

∣∣
LO is accompanied by the quark mass mq, as in [1],
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and, therefore, is strongly suppressed compared with the above-mentioned twist-three contribution
associated with g(v,a)⊥ (u). We also note that the derivative, ∂g(a)⊥ (u)/∂u, arises in J(1)

γ∗ρ0
T
(kkk⊥,∆∆∆⊥)

∣∣
LO.

When Q2→ 0, the formula (3.1) has the well-behaved and finite limit which reproduces the LO
impact factor for the real photon, J(1)

γρ0
L
(kkk⊥,∆∆∆⊥)

∣∣
LO, derived in [1], while we find, J(1)

γ∗ρ0
T
(kkk⊥,∆∆∆⊥)

∣∣
LO∼

log(Q2/∆∆∆
2
⊥), for the ρ0

T case; this is due to the end-point behaviors, g(v)⊥ (u)∼ 1, ∂g(a)⊥ (u)/∂u∼ 1,
for u→ 0 and 1, while we have φ‖(u)∼ u(1−u); see (4.3), (4.4) below. Note that these end-point
behaviors of the DAs for the light vector mesons are direct consequences of conformal symmetry
in massless QCD [4]. Thus, the factorization formula for J(1)

γ∗ρ0
T
(kkk⊥,∆∆∆⊥) is suffered from infrared

(IR) divergence in the real photon limit and, thus, is useful only for the case with the highly-virtual
initial-state photon with Q� ΛQCD. This implies that, for Q . ΛQCD, the impact factor for the
transversely polarized vector meson should receive the “non-factorizable” soft QCD contributions.

4. Light-cone sum rule calculation for γ → ρ0
T impact factor

Still, the impact factor for small as well as large Q2 should obey the dispersion relation,

J(1)
γ∗ρ0

T
(kkk⊥,∆∆∆⊥) =

∫
∞

0
dm2 χ(m2)

Q2 +m2 =
a

Q2 +m2
ρ

+
∫

∞

m2
th

dm2 χ(m2)

Q2 +m2 , (4.1)

with the corresponding spectral weight function χ(m2); here, the lowest resonance contribution,
which is given as the ρ-meson pole with the residue a, is explicitly shown and the higher reso-
nance contributions are expressed as the continuum integral starting from the threshold, m2

th. Those
quantities arising in the dispersion relation may be determined by matching with the factorization
formula of J(1)

γ∗ρ0
T
(kkk⊥,∆∆∆⊥)

∣∣
LO in the region Q & ΛQCD where the QCD factorization is applicable; in

particular, invoking the quark-hadron duality, the spectral function χ(m2) for the continuum con-
tribution in the RHS of (4.1) is taken to be the same as implied by the factorization formula; then,
performing the Borel transformation with the parameter MB to allow an efficient matching, we get

a =−
√

4παem 4παs
δ ab

2Nc

fρmρ√
2

(
eeeγ · eee∗ρT

)[
e

m2
ρ

M2
B

∫ 1

u0

du

(
g(v)⊥ (u)− 1

4
∂g(a)⊥ (u)

∂u

)
e
− (1−u)∆∆∆2

⊥
uM2

B

]
+ · · · ,

(4.2)
with eµ

ρT = (0,eeeρT ) being the polarization vector for the transversely polarized ρ meson. Here, the
ellipses stand for the terms with more complicated structure, having the dependence on kkk⊥ as well
as on the three-body (q̄qg) DAs for the transversely polarized ρ meson. Those terms are obtained
by matching with the factorization formula which takes into account the next-to-leading term in
the collinear expansion and the q̄qg three-body Fock states in the vector meson. Those effects
corresponding to the ellipses in (4.2) are neglected for simplicity in the following discussion and
will be discussed elsewhere. The formula (4.2) corresponds to the light-cone QCD sum rule, where
the relevant nonperturbative effects are encoded into the meson DAs, i.e., the light-cone dominated
matrix elements; note that the quark-hadron duality also allows us to determine the lower limit of
the integral, u0, in terms of the threshold parameter mth of (4.1). It is worth mentioning that the
light-cone sum rules have been successfully applied to the calculation of the soft QCD contributions
associated with the real photons in various exclusive processes.

3
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We use a first few terms in the Gegenbauer expansion of the vector meson DA, as (ξ ≡ 2u−1)

φ‖(u) = 6u(1−u)

(
1+

∞

∑
n=1

b2nC3/2
2n (2u−1)

)
' 6u(1−u)

(
1+b2

3
2
(5ξ

2−1)
)

, (4.3)

in (3.1). Similar expansions are constructed for the twist-three DAs [4], such that all constraints
from QCD equations motion and conformal symmetry are obeyed, and we use their first few terms,

g(v)⊥ (u)' 3
4
(
1+ξ

2)+b2
3
7
(3ξ

2−1) , g(a)⊥ (u)' 6u(1−u)
(

1+b2
1
4
(5ξ

2−1)
)

, (4.4)

for the DAs arising in (4.2). We use b2 = 0.18; this is the value given at the scale 1 GeV [4],
and we neglect the renormalization scale dependence of the DAs in the following calculations.
mρ = 0.775 GeV, and fρ = 0.198 GeV are used as usual. The strong coupling constant is fixed to
the value αs = 0.32, which was used in [1]. The threshold parameter, arising in (4.1) and (4.2), is
taken as m2

th = 1.5 GeV2, as deduced from the QCD sum rules to determine mρ and fρ , see [4].
Fig. 1(a) shows the quantity in the square brackets “[ ]” in (4.2) as a function of M2

B, with good
stability in the relevant region of auxiliary parameter MB. Using this result, we evaluate the light-
cone sum rule result of (4.1), and this evaluation of (4.1), divided by the factor in front of the square
brackets in (4.2), is shown by the gold curve in Fig. 1(b) as a function of Q2, yielding the finite real-
photon limit for Q2 = 0. The blue curve is obtained using the corresponding factorization formula
instead of (4.1), (4.2); the blue curve diverges logarithmically as Q2→ 0. The ρ-meson pole term
dominates (4.1) for small ∆∆∆

2
⊥, as controlled by (4.2), exhibiting behaviors like the vecor meson

dominance (VMD) model. Our result (4.1), (4.2) provides an interpolating forumula between the
VMD, which is to be associated with pomeron and is justified phenomenologically for Q2 ∼ 0, and
the QCD factorization, associated with the two gluons and reliable for Q2� ΛQCD.
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Figure 1: Light-cone sum rule result for (a) the quantity in the square brackets in (4.2) as a function of the
Borel parameter M2

B and (b) the impact factor (4.1), divided by the prefactor of (4.2), as a function of Q2.

5. Application to two-photon process γγ → ρ0ρ0

Substituting the above results into (2.1), we obtain the forward amplitude for γγ → ρ0ρ0 at
high energy, i.e., at s� −t � Λ2

QCD, and thus the corresponding cross sections specifying the
particular polarizations for each of the produced ρ mesons. For the longitudinally polarized ρ0

L ,
we use the impact factor (3.1) based on the LO factorization formula, while, for the transversely
polarized ρ0

T , we use the impact factor (4.1) using (4.2). We give an estimate of the cross sections

4
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with s = 100 GeV2 for γ∗γ → ρ0
T ρ0

L , where γ∗ with the virtuality Q2 is assumed to be transversely
polarized and to evolve into ρ0

T in the forward direction with ∆∆∆
2
⊥ = 3 GeV2, by the gold curve

in Fig. 2(a) as a function of Q2; the blue curve is obtained by replacing our impact factor (4.1)
with the corresponding LO factorization formula J(1)

γ∗ρ0
T
(kkk⊥,∆∆∆⊥)

∣∣
LO (compare with the blue curve in

Fig. 1(b)). For comparison, we also show, by the dot plotted at Q2 = 0, the γγ→ ρ0
Lρ0

L cross section
with the two real photons, which is consistent with the results in [1, 2]. We provide an estimate
for the γγ → ρ0

T ρ0
L cross section in the real photon limit for the first time, and the result suggests

that the cross section for γγ → ρ0
T ρ0

L could be larger than that for γγ → ρ0
Lρ0

L . Fig. 2(b) shows the
cross section for γ∗γ → ρ0

T ρ0
L as a function of cos2 θ for various values of Q with s = 100 GeV2.

It is worth mentioning that, for cos2 θ & 0.4, the γγ → ρ0
Lρ0

L cross section due to the t-channel two
gluon (gg) exchange, corresponding to the dot in Fig. 2(a), is shown to exceed considerably the
corresponding cross section due to the t-channel qq̄ exchange; see the discussion in [1].

The final states of ρ0
T ρ0

L with different polarizations, as well as the final states with different
flavor types, ρ0ω , ρ0φ , . . ., are allowed only in the gg exchange mechanism, while the final states
with the charged vector mesons as well as pions, such as ρ+ρ−, π+π−, are allowed only in the qq̄
exchange mechanism. The γ(∗)γ → ρ0

T ρ0
L may be measured in Belle II experiment. Its improved

calculations taking into account the ellipses in (4.2) will be presented elsewhere.
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Figure 2: Light-cone sum rule results for the γ∗γ → ρ0
T ρ0

L cross section with s = 100 GeV2 as a function of
(a) Q2 and (b) cos2 θ . In (a), the result using factorization and the γγ → ρ0

Lρ0
L cross section are also shown.
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