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1. Introduction

In this proceeding we present methods and results, which are extensively discussed in [1]
for the LHC and in [2] for the Tevatron. With the LHC running at 13 TeV the experimental
uncertainties will significantly decrease for the tt̄ process. The tension between theory and ex-
periment reported for the pT (t) distribution at 8 TeV [3, 4] will be examined in detail with the
data at 13 TeV. Calculations in tt̄ beyond the NLO in QCD are presented in [5–21]. The inclu-
sion of EW corrections to tt̄ production is realised in [22–34]. The complete NLO EW correc-
tions require the photon-induced subprocesses. For this reason several PDF sets are developed
including the photon PDF. These are the MRST2004QED [35], the NNPDF2.3QED [36], the
APFEL_NN2.3QED [37, 38], the CT14QED [39], the NNPDF3.0QED [40], the LUXQED
[41] and the very recent LUXQED17 [42] and NNPDF3.1LUXQED [43, 44]. For the tt̄ pro-
duction the NNPDF2.3QED and CT14QED PDF sets are compared in [45, 46] whereas the
LUXQED and the NNPDF3.0QED ones in [1,47]. Similar comparisons between the NNPDFQED
and the CT14QED, LUXQED PDF sets are realised for dilepton final states in [48, 49].

2. Calculation framework

In this work we present a NNLO QCD + NLO EW calculation for tt̄ production at differen-
tial level using the multiplicative combination. For the NNLO QCD part we use the calculational
techniques of [8] and for the NLO EW part we use the currently public version of the MAD-
GRAPH5_AMC@NLO framework [50, 51] already validated in [52–54]. In figure 1 we present a
pictorial representation of the perturbative orders considered in the calculation.
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Figure 1: Perturbative orders included in the calculation (black-coloured=additive approach, +green-
coloured=multiplicative approach).

The NNLO QCD corrections, as expected, reduce significantly the scale uncertainties and as a re-
sult the subleading α2,αsα

2,α3 orders (sub EW) need to be included. In figure 1, the consideration
of only the black coloured perturbative orders defines the additive approach. In this approach we
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define the QCD, EW and QCD+EW orders for an observable Σ as follows:

ΣQCD ≡ ΣLO QCD +ΣNLO QCD +ΣNNLO QCD

ΣEW ≡ ΣLO EW +ΣNLO EW +Σsub EW

ΣQCD+EW ≡ ΣQCD +ΣEW

(2.1)

Using the ingredients of equation 2.1 one can approximate the missing higher order mixed term
O(α3

s α) (denoted with green colour in figure 1) by applying the NLO QCD K-factor on the α2
s α

perturbative order. This defines the multiplicative approach as follows:

ΣQCD×EW ≡ ΣQCD+EW +(KNLO
QCD−1)ΣNLO EW (2.2)

Following the setup of [1], we use the 5-flavour scheme for the calculation and the EW parameters
are defined in the Gµ -scheme. In equation 2.3 we show the input parameters of the calculation.

mt = 173.3 GeV , mH = 125.09 GeV , mW = 80.385 GeV , mZ = 91.1876 GeV ,

Gµ = 1.1663787 ·10−5 GeV−2 ,

µ =
mT,t

2
for the pT (t) distribution, µ =

mT,t̄

2
for the pT (t̄) distribution,

µ =
HT

4
=

1
4
(mT,t +mT,t̄) for the m(tt̄),yavt ,y(tt̄) distributions.

(2.3)

The observables pT,avt,yavt are defined as the average of the two top pT and y distributions respec-
tively. The particular scale choices are based on the principle of the fastest convergence, are taken
from [8] and are supported by the recent calculation at NLO+NNLL′ accuracy [20]. The scale
uncertainties are calculated by the 7-point variation in the interval {µ/2 < µ f ,µr < 2µ}. In the
following section we present results on the comparison between the NNPDF3.1LUXQED and
LUXQED17 PDF sets at 13 TeV.

3. Results

In this section we will first show comparisons between the two PDF sets at differential level
for m(tt̄), pT,avt, yavt and y(tt̄) and then discuss specific distributions. In figure 2 we show the ratio
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Figure 2: The impact of the EW corrections for the m(tt̄), pT,avt,yavt,ytt̄ distributions for the
NNPDF3.1LUXQED and the LUXQED17 PDF sets.
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EW/QCD. In these ratio plots we can see that the two PDF sets are in very good agreement with
each other. We remind to the reader that this was not the case in similar comparisons between
the NNPDF3.0QED and the LUXQED PDF sets [1, 47]. The NNPDF collaboration adopted
the LUXQED approach for the photon PDF in the 3.1 version. Detailed comparisons among the
aforementioned PDF sets are realised in [43, 44], two of which we show in figure 3.

Figure 3.2. Comparison between �(x, Q) in the NNPDF3.1luxQED NLO and NNLO fits.
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Figure 3.3. Comparison between the photon PDF �(x, Q) in NNPDF3.0QED and in NNPDF3.1luxQED
at Q = 1.65 GeV (left) and at Q = 100 GeV (right plot). In the latter case, results are normalised to the
central value of NNPDF3.0QED.

3.2 QED e↵ects on the quark and gluon PDFs

In this section we study the quark and gluon PDFs in NNPDF3.1luxQED as compared to their
corresponding QCD-only counterparts in NNPDF3.1. This comparison gauges the impact on
quarks and gluons of three di↵erent QED e↵ects: the modification of the momentum sum rule,
the QED splitting functions in the DGLAP evolution equations, and the QED corrections to
the DIS coe�cient functions.

In Fig. 3.5 we show the singlet and gluon PDFs of the NNPDF3.1 and NNPDF3.1luxQED
sets at Q = 100 GeV normalised to the central value of the former. While di↵erences at the
level of the singlet are small, di↵erences for the gluon PDF are somewhat larger. Indeed, the
NNPDF3.1luxQED gluon is smaller than its QCD counterpart by about 1% at x ' 10�2 and
enhanced by about 5% for x ' 0.5. In both cases, the shift in the central values is at the edge
of the corresponding PDF uncertainty band. The e↵ect on the gluon PDF can be explained by
observing that, as we will discuss in Sect. 3.4, the photon PDF can carry up to 0.5% of the proton
momentum. This fraction is e↵ectively subtracted from the singlet and gluon distributions by
means of the sum rule, Eq. (2.2). However, the sum rule mostly a↵ects the gluon PDF because
the normalisation of the quark singlet is more tightly constrained from the DIS inclusive structure
function data. We conclude that the back-reaction of QED e↵ects onto the quark and gluon
PDFs is small but not negligible, particularly for the latter.

For completeness, in Fig. 3.6 we show the same comparison as in Fig. 3.5 but now be-
tween NNPDF3.1luxQED and LUXqed17. Note that the quark and gluon PDFs of LUXqed17
correspond closely to those of the PDF4LHC15 set, di↵ering only by a rescaling of the gluon
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Figure 5.8: Comparison of parton luminosities with the NNPDF3.0 and NNPDF3.1 NNLO PDF sets
for the LHC 13 TeV. From left to right and from top to bottom quark-antiquark, quark-quark, gluon-
gluon and quark-gluon PDF luminosities are shown. Results are shown normalized to the central value
of NNPDF3.1.

Agreement becomes marginal at large masses, MX ⇠> 2 TeV, reflecting the limited knowledge of
the large-x PDFs. For the gluon-gluon and gluon-quark channels we find reasonable agreement
for masses up to MX ' 600 GeV, relevant for precision physics at the LHC, but rather worse
agreement for larger masses, relevant for BSM searches, in particular between NNPDF3.1 and
MMHT14. Of course it should be kept in mind that NNPDF3.1 has a wider dataset and a larger
number of independently parametrized PDFs than MMHT14 and CT14, hence the situation may
change in the future once all global PDF sets are updated.

Next, in Fig. 5.11 we compare to ABMP16 PDFs. In this case, we show results corresponding
both to the default ABMP16 set, which has ↵s(mZ) = 0.1147, and to the set with the common
↵s(mZ) = 0.118 adopted so far in all comparison. While there are sizable di↵erences between
NNPDF3.1 and ABMP16 when the default ABMP16 value ↵s(mZ) = 0.1147 is used, especially
for the gluon-gluon luminosity, the agreement improves when ↵s(mZ) = 0.118 is adopted also
for ABMP16. However, ABMP16 luminosities have very small uncertainties at low and high
MX , presumably a consequence of an over-constrained parametrization, and of using a Hessian
approach but with no tolerance, as discussed in Section 3.3.

76

Figure 3: Comparisons between the NNPDF3.0 and the NNPDF3.1 PDF sets. The plots are taken from
[43, 44].

In the left plot of figure 3 we can see the reduction on the uncertainty of the photon PDF for
NNPDF3.1 as well as the reduction of the central value at the high x region. In the right plot it is
interesting to notice the reduction on the uncertainty on the gg luminosity for the NNPDF3.1.
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Figure 4: The d|y|(tt̄) distribution at 13 TeV. The format of the plot is explained in the text.

Focusing on specific differential distributions at 13 TeV we start with the d|y|(tt̄) ≡ |y(t)| −
|y(t̄)| in figure 4. The format of the plots in figures 4 and 5 is the following. In the main panel
we show the distributions of the QCD (black) and QCD×EW (green) according to the definitions
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of equations 2.1 and 2.2. In the first inset we show the scale (green) and PDF (light green-dashed
black) uncertainties of the QCD×EW prediction as well as their sum in quadrature (grey). In
the second inset we show the ratio (QCD×EW)/QCD in order to separate the effect of the EW
corrections. On the left plots we have the results with the LUXQED17 and on the right plots the
ones with the NNPDF3.1LUXQED. The d|y|(tt̄) distribution is the one on which the tt̄ central-
peripheral asymmetry (AC) is built. In the last inset we can see that the EW corrections are not
symmetric around zero, which indicates their contribution to the asymmetry. A dedicated work
on this observable at this level of accuracy is presented in [55] for both the total cross section and
differential distributions. In figure 5 we show the m(tt̄) and pT,avt results. In both these distributions
we can see the sudakov logarithmic suppression rendered by the virtual EW corrections. With the
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Figure 5: The m(tt̄) (top) and pT,avt (bottom) distributions at 13 TeV. The format of the plots is explained in
the text.
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photon PDF effect being small to negligible and since the Heavy Boson Radiation (HBR) is not
included as describing different processes 1, there is nothing to compensate this suppression at the
high energy regime. Looking at the m(tt̄) distribution in the second inset, we can see that in both
PDF sets the EW corrections are below 4% even at the region of 2 TeV of invariant mass with
the theory uncertainties (first inset) being of the order of ∼ 10% in that region. However, in the
pT,avt distribution the situation is different. The EW corrections induce a similar maximum 4%
effect but already at pT ∼ 500 GeV. This is a regime where the theory uncertainties are of the
order of 5% and furthermore experimentally will be measured very accurately at 13 TeV. In all
cases in figures 4 and 5 we notice that the EW corrections are no longer sensitive to the choice
of the PDF set, which is in agreement with what we see also in figure 2. Furthermore we notice
that in the LUXQED17 (left) plots the PDF uncertainties are comparable with the scale ones
(d|y|(tt̄) distribution) and especially in the tails of the m(tt̄) and pT,avt distributions they become
the dominant theory uncertainty. However this is not the case in the NNPDF3.1LUXQED (right)
plots. This is mostly due to the reduction of the PDF uncertainties in the gg luminosity for the
NNPDF3.1 PDF set, shown in the right plot of figure 3. A detailed discussion on this improvement
is realised in [43, 44].

4. Conclusions

In this proceeding we show the calculation framework described in [1] and we apply it for the
comparison of the latest available PDF sets which have QCD evolution at NNLO and include the
photon PDF with the LUXQED approach. We explain and restrict ourselves to the multiplicative
combination of the NNLO QCD and NLO EW corrections to tt̄ distributions. We compare at
differential level the results obtained with the LUXQED17 and NNPDF3.1LUXQED PDF sets.
The results show that the inclusion of the NNLO QCD perturbative order reduces significantly the
scale and therefore the total theory uncertainty. Furthermore we discuss the reduction of the PDF
uncertainties in the NNPDF3.1LUXQED PDF set. The EW corrections are independent on the
choice between the aforementioned two PDF sets. The effect of the EW corrections on the tail
of the pT,avt distribution is of the same order of the total theory uncertainty and in an accurately
probed regime by the LHC run at 13 TeV. The distributions shown in this proceeding are part
of the results produced to be compared with experimental data from CMS and are available in
HTTP://WWW.PRECISION.HEP.PHY.CAM.AC.UK/RESULTS/TTBAR-NNLOQCD-NLOEW

5. Acknowledgments

I would like to thank M. Czakon, D. Heymes, A. Mitov, D. Pagani, M. Zaro and A. Papanas-
tasiou for their collaboration on this work. My participation to this workshop was supported by
the F.R.S.-FNRS “Fonds de la Recherche Scientifique” (Belgium). I would like also to thank the
department of physics at TUM (Munich) for the hospitality during the completion of this project.

1It is shown explicitly in [1] that the inclusion of the HBR causes an effect always smaller in comparison to the EW
corrections.
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