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Being the "mother distributions" of all types of two-parton correlation functions, generalized
TMDs (GTMDs) have garnered a lot of attention. We address the important question of how to
access GTMDs in physical processes. Recently, we have shown that quark GTMDs can in princi-
ple be probed through the exclusive pion-nucleon double Drell-Yan process, where the focus was
on two particular GTMDs only. We now present new results concerning access to the remaining
quark GTMDs in the same process. Moreover, we show that GTMDs for gluons can be explored
via exclusive double production of pseudoscalar quarkonia (ηc or ηb) in nucleon-nucleon colli-
sions.
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GTMDs in physical processes Shohini Bhattacharya

1. Introduction

Generalized transverse momentum dependent parton distributions (GTMDs) are the most gen-
eral (two-)parton correlation functions of hadrons [1, 2, 3]. The information encoded in GTMDs
goes beyond what one can learn from generalized parton distributions (GPDs) and transverse mo-
mentum dependent parton distributions (TMDs), which characterize the 3-D structure of hadrons.
Both GPDs and TMDs are (merely) kinematical projections of certain GTMDs.

The interest in GTMDs is not confined to their “mother distribution" character: For a vanishing
longitudinal momentum transfer to the hadron, the Fourier transform of a GTMD is a partonic
Wigner function that depends on the (average) longitudinal and transverse momentum as well as
transverse position of partons, which in principle provides 5-D images of hadrons [4, 5]. Moreover,
for quarks and gluons there exists a relation between a specific GTMD — F1,4 in the notation
of [2] — and the orbital angular momentum (OAM) of partons inside a longitudinally polarized
nucleon [6, 7]. Finally, certain GTMDs are related to spin-orbit correlations of the nucleon [6, 8],
which have a meaning similar to the ones in the hydrogen atom.

For quite some time it was entirely unclear if/how GTMDs can be measured. Recently, how-
ever, it has been argued that gluon GTMDs can be accessed through exclusive hard diffractive di-jet
production in DIS [9], which could be studied at a future electron-ion collider. In the meantime,
several further works on GTMD observables have appeared [10, 11, 12, 13, 14, 15, 16, 17].

In this contribution we concentrate on two types of processes that are sensitive to GTMDs.
In Ref. [15] we have demonstrated that quark GTMDs can be measured via the exclusive double
Drell-Yan process. The focus of that work has been on two specific GTMDs. Here we argue that
the remaining (chiral-even) quark GTMDs can also be addressed in the same process [18]. We also
show that the exclusive double production of pseudoscalar quarkonia in nucleon-nucleon collisions,
NaNb→ ηQηQNaNb where ηQ denotes either ηc or ηb, is sensitive to GTMDs of gluons [17].

2. Quark GTMDs and the exclusive double Drell-Yan process

The exclusive double Drell-Yan process in pion-nucleon scattering, πN → (`−1 `
+
1 )(`

−
2 `

+
2 )N

′,
gives access to leading-twist (chiral-even) GTMDs of quarks in the ERBL region characterized by
−ξa ≤ xa ≤ ξa, with ξa the skewness variable for the nucleon [15]. In total eight (complex-valued)
such functions exist, which in Ref. [2] have been denoted by Fq

1,1 , . . . ,F
q

1,4 , Gq
1,1 , . . . ,G

q
1,4. While

Ref. [15] has mainly concentrated on Fq
1,4 and Gq

1,1 — these functions have attracted considerable
attention in relation to the nucleon spin structure — we now discuss how the remaining quark
GTMDs can be accessed in the same process via suitable polarization observables [18].

2.1 Accessing Fq
1,1 and Gq

1,4

We first consider addressing these two GTMDs for a vanishing transverse momentum transfer
to the nucleon, ~∆a⊥ = 0. In the case of Fq

1,1, one can use the following linear combination of
polarization observables [18],

1
4
(
τUU + τLL + τXX + τYY

)∣∣
~∆a⊥=0

= 2C(−)
[
Fq

1,1(xa,~ka⊥)φπ(xb,~k2
b⊥)
]

C(−)
[
Fq∗

1,1(xa,~pa⊥)φ
∗
π (xb,~p2

b⊥)
]
. (2.1)
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The indices U (unpolarized), L (longituinally polarized) and X , Y (transversely polarized) charac-
terize the polarization state of the nucleon, where the first (last) index refers to the incoming (outgo-
ing) nucleon. Note that τLL, τXX , τYY define double-spin asymmetries [15]. In Eq. (2.1), φπ denotes
the light-cone wave function of the pion. While the (average) longitudinal quark momentum frac-
tions xa and xb for the nucleon and pion, respectively, are fixed by the external kinematics of the
process, the transverse quark momenta are integrated over with the constraint~ka⊥+~kb⊥ = ∆~q⊥/2,
where ∆~q⊥ =~q1⊥−~q2⊥ is the difference of the transverse momenta of the produced virtual pho-
tons [15]. For the precise definition of the convolution integral C(−) for transverse momenta we
also refer to [15]. We also mention that we have summed over the photon polarizations. The linear
combination 1

4(τUU + τLL− τXX − τYY ) gives access to Gq
1,4 [18]. Interestingly, for ~∆a⊥ 6= 0 the

aforementioned linear combinations provide two things — sensitivity to Fq
1,1, Gq

1,4 but with richer
kinematical dependence, and also access to Fq

1,4 and Gq
1,1 [15].

2.2 Accessing other quark GTMDs

For~∆a⊥ = 0, the following double-spin asymmetry is sensitive to Fq
1,2 and Gq

1,2 [18],

τXY
∣∣
~∆a⊥=0 = τY X

∣∣
~∆a⊥=0

=−4
(1−ξ 2

a )
2

M2 ∆q1
⊥∆q2

⊥

{
C(+)

[
∆~q⊥ ·~ka⊥

∆~q2
⊥

Fq
1,2 φπ

]
C(+)

[
∆~q⊥ ·~pa⊥

∆~q2
⊥

Fq∗
1,2 φ

∗
π

]

−C(−)
[

∆~q⊥ ·~ka⊥
∆~q2
⊥

Gq
1,2 φπ

]
C(−)

[
∆~q⊥ ·~pa⊥

∆~q2
⊥

Gq∗
1,2 φ

∗
π

]}
, (2.2)

with M denoting the nucleon mass. For brevity we have omitted the arguments of the GTMDs and
the pion wave function. The two terms on the r.h.s. of Eq. (2.2) can be disentangled by exploiting
suitable linear polarizations of the photons. Moreover, the observables τXU and τXL give us a hold
over the imaginary and real parts of Fq

1,2 and Gq
1,2, respectively, through interference with ReFq

1,1
and ReGq

1,4 [18]. We recall that ReFq
1,1 and ReGq

1,4 are potentially large since, in the forward limit,
they are related to the density of unpolarized and longitudinally polarized quarks [2].

Based on the definitions of Fq
1,3 and Gq

1,3 [2, 15] one must have ~∆a⊥ 6= 0 in order to address
these two GTMDs. Here we just list one sample observable which is sensitive to Gq

1,3 [18],

1
4

[
∆

1
a⊥
(
τXU + τUX

)
+

ξa~∆
2
a⊥

2M

(
τLU + τUL

)]
=−2

(1−ξ 2
a )

M
ε

i j
⊥ ∆qi

⊥∆
j
a⊥Im

{
C(−)

[
Fq

1,1 φπ

]
C(+)

[
~β⊥ ·~pa⊥Fq∗

1,2 φ
∗
π

]}
+2

(1−ξ 2
a )

M
ε

i j
⊥ ∆qi

⊥∆
j
a⊥

M2

(
Im
{

C(−)
[
~β⊥ ·~ka⊥Gq

1,1 φπ

]
C(−)

[
~∆a⊥ ·~pa⊥Gq∗

1,2 φ
∗
π

]}
+~∆2

a⊥ Im
{

C(−)
[
~β⊥ ·~ka⊥Gq

1,1 φπ

]
C(+)

[
Gq∗

1,3 φ
∗
π

]})
, (2.3)

where the vector ~β⊥ is defined through ∆~q⊥ and~∆a⊥ [15]. Again, using suitable polarization states
of the virtual photons allows one to disentangle terms with F-type and G-type GTMDs. Note that,
in general, Gq

1,3 always appears in combination with Gq
1,2. The same applies to Fq

1,3 and Fq
1,2.
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3. Gluon GTMDs and exclusive double quarkonium production

3.1 Scattering amplitude

The discussion for the exclusive double production of pseudoscalar quarkonia in nucleon-
nucleon collisions has considerable similarities with the double Drell-Yan process. Our presenta-
tion here is largely based on the recent work in [17] to which we refer for more details. For this
process the large scale, which justifies a perturbative treatment, is given by the quarkonium mass.

A total of eight Feynman graphs contribute to lowest order in the strong coupling constant.
They give rise to the scattering amplitude

Tλa,λ ′a;λb,λ
′
b
= −2iA

∫
d2~ka⊥

∫
d2~kb⊥ δ

(2)
(

∆~q⊥
2
−~ka⊥−~kb⊥

)
×
[
W g

λa,λ ′a
(xa,~ka⊥)W g

λb,λ
′
b
(xb,~kb⊥)+W̃ g

λa,λ ′a
(xa,~ka⊥)W̃ g

λb,λ
′
b
(xb,~kb⊥)

]
, (3.1)

which depends on the helicities of the incoming and outgoing nucleons. The explicit expression for
the constant A can be found in Ref. [17]. The quantities W g and W̃ g are correlation functions which
are defined through the gluon GTMDs Fg

1,1 , . . . ,F
g

1,4 and Gg
1,1 , . . . ,G

g
1,4, respectively. Like for the

double Drell-Yan process this reaction, to leading order in perturbation theory, provides access to
GTMDs in the ERBL region only. According to Eq. (3.1), in general F-type and G-type GTMDs
as well as their interference enter in the observables.

3.2 Polarization Observables

When defining polarization observables we focus on the GTMDs of one nucleon (nucleon Na),
while we sum/average over the helicities of the nucleon Nb. In doing so one obtains observables that
are analogous to the pion-nucleon double Drell-Yan process. Below we will use~∆b⊥ = 0 through-
out, which simplifies the expressions for the observables. Then one has (again) two independent
external transverse momenta only, namely ∆~q⊥ =~q1⊥−~q2⊥ and~∆a⊥ =−(~q1⊥+~q2⊥).

We are specifically interested in gaining access to Fg
1,4 and Gg

1,1 because of their relation to the
nucleon spin structure. (These functions are the gluonic counterpart of Fq

1,4 and Gq
1,1.) In order to

address Fg
1,4 one can consider the following linear combination of polarization observables,

1
4
(
τUU + τLL− τXX − τYY

)
≈
(
ε

i j
⊥∆qi

⊥∆
j
a⊥
)2

M4 C
[
~β⊥ ·~ka⊥Fg

1,4(xa,~ka⊥) Fg
1,1(xb,~kb⊥)

]
C
[
~β⊥ ·~pa⊥Fg∗

1,4(xa,~pa⊥)Fg∗
1,1(xb,~pb⊥)

]
+C

[
Gg

1,4(xa,~ka⊥)Gg
1,4(xb,~kb⊥)

]
C
[
Gg∗

1,4(xa,~pa⊥)Gg∗
1,4(xb,~pb⊥)

]
, (3.2)

where ε
i j
⊥ is the 2-dimensional epsilon tensor, and the convolution integral C is defined in Ref [17].

The meaning of ~β⊥ is identical to the case of double Drell-Yan. Eq. (3.2) shows an approximated
result (see [17] for the full expression). In order to arrive at a simplified expression for the observ-
able we have assumed the following hierarchy of the magnitude of gluon GTMDs: Fg

1,1 > Gg
1,4�

remaining GTMDs. (Recall also the reasoning in Sect. 2.2.) Unlike the double Drell-Yan process,
where the polarization states of the photons can be utilized to disentangle in a model-independent
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manner F-type and G-type GTMDs, this is not possible for double ηQ production. This does not
work even though the prefactors of the two terms on the r.h.s. of Eq. (3.2) are different. One can
readily understand this point by keeping in mind that GTMDs also depend on the variable~k⊥ ·~∆⊥,
and therefore also the 2nd term on the r.h.s. of (3.2) depends on the angle ϕ between~∆a⊥ and ∆~q⊥.
On the other hand, if this dependence is mild, one may be able to separate the two terms in Eq. (3.2)
by measuring this observable as function of ϕ .

For the GTMD Gg
1,1 the approximated observable corresponding to Eq. (3.2) is

1
4
(
τUU + τLL + τXX + τYY

)
≈

ε
i j
⊥∆

j
a⊥

M
εkl
⊥∆l

a⊥
M

C
[

ki
a⊥
M

Gg
1,1(xa,~ka⊥)Gg

1,4(xb,~kb⊥)

]
C
[

pk
a⊥
M

Gg∗
1,1(xa,~pa⊥)Gg∗

1,4(xb,~pb⊥)

]
+C

[
Fg

1,1(xa,~ka⊥)Fg
1,1(xb,~kb⊥)

]
C
[
Fg∗

1,1(xa,~pa⊥)Fg∗
1,1(xb,~pb⊥)

]
. (3.3)

While we are interested in the 1st term on the r.h.s. of Eq. (3.3), based on the above discussion about
the magnitude of gluon GTMDs we expect that the 2nd term clearly dominates this observable. It
is therefore apparently impossible to study Gg

1,1 through this observable. This situation may change
only if one considers polarization of the nucleon Nb as well. In general, one finds that the same
problem also exists for other polarization observables that in principle are sensitive to Gg

1,1.
Like for double Drell-Yan [15], we also consider observables that depend on the interference

between Fg
1,4 (and Gg

1,1) and other GTMDs that are expected to be large. This situation occurs for

1
2
(
τUL + τLU

)
≈−2

ε
i j
⊥∆qi

⊥∆
j
a⊥

M2

× Im
{

C
[
~β⊥ ·~ka⊥Fg

1,4(xa,~ka⊥)Fg
1,1(xb,~kb⊥)

]
C
[
Fg∗

1,1(xa,~pa⊥)Fg∗
1,1(xb,~pb⊥)

]}
, (3.4)

In order to arrive at the approximated expression in Eq. (3.4) we have again made use of the
aforementioned hierarchy for gluon GTMDs. Note that Fg

1,4 is accompanied by three powers of
the large GTMD Fg

1,1. However, in Eq. (3.4) appears the imaginary part of products of GTMDs,
which presumably is mostly sensitive to ImFg

1,4. But at present the main interest is in ReFg
1,4 (and

ReGg
1,1). To circumvent this problem one can consider 1

2(τXY − τY X) instead of the observable
in (3.4). The result in this case is identical to the r.h.s. of (3.4), but with an overall minus sign and
Re{. . .} instead of Im{. . .}, which implies that ReFg

1,4 gets multiplied by the large ReFg
1,1.

4. Summary and Outlook

We have proposed the exclusive pion-nucleon double Drell-Yan process and exclusive double
production of pseudoscalar quarkonia in nucleon-nucleon collisions to probe GTMDs for quarks
and gluons, respectively. To this end, we have performed a leading-order analysis in perturbative
QCD, and we have shown that quark/gluon GTMDs can, in principle, be accessed in the ERBL
region via suitable (linear combinations of) polarization observables.

For the future it is important to obtain (rough) numerical estimates for the various observables
in order to find out if their measurement is feasible. One should also search for processes that allow
one to study quark GTMDs in lepton-nucleon scattering and/or that are sensitive to the DGLAP
region of GTMDs.
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