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1. DIS with a jet correlator

A correct treatment of the partonic kinematics in inclusive Deep Inelastic Scattering (DIS) is
important for establishing the limits of applicability of QCD factorization theorems and correctly
accessing Parton Distribution Functions (PDFs) from experimental data [1]. This is in particular
true for experiments at Jefferson Lab, but has implications also for higher energy experiments.

Due to color confinement, scattered quarks must turn into hadrons. Thus a minimal extension
of the usual handbag diagram in pQCD includes a “jet correlator” that describes the production of
particles collinear to the scattered quark, see the top blob in Fig. 1a. The appearance of a collimated
jet subgraph in a fully inclusive cross section may appear at first puzzling, due to the absence of
a measured scale that can physically identify the jet. Furthermore, by applying the completeness
relation, it would seem that Fig. 1a would reduce to the usual handbag diagram with a quark line
when summing over all possible final states. However, the final state invariant mass

M2
X = Q2(1− xB)/xB +M2 (1.1)

(with M the proton’s mass) is kinematically limited at large xB, and only a subset of final states
can be physically produced. In particular, the hadrons transverse momentum is limited, and the
the final state becomes more and more jet-like as xB increases. It is the kinematics, rather than an
explicit measurement, that provides the scale necessary to justify the jet subgraph.

The leading twist diagram in Fig. 1a has already been analyzed in collinear factorization,
and utilized to: (i) perform kinematic “jet mass corrections” to the unpolarized F1,2,3 structure
functions, and similarly to the polarized g1, using the chiral-even part of the jet correlator [2];
and (ii) reveal a novel coupling of the collinear transversity parton distribution function with the
chiral-odd component of the jet correlator [3]. The latter will be discussed in more detail in Sect. 3.
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Figure 1: Jet correlators in inclusive DIS at leading order: leading twist (a), and twist-3 (b and c) diagrams.

The quark jet correlator appearing in the top blob of Fig 1a is defined as [2, 3]:

Ξi j(l,n+) =
∫ d4η

(2π)4 eil·η 〈0|W n+
(+∞,η) ψi(η)ψ̄ j(0)W

n+
(0,+∞) |0〉 , (1.2)

where l is the quark’s four-momentum, Ψ the quark field operator (with quark flavor index omitted
for simplicity), |0〉 is the nonperturbative QCD vacuum, and the Wilson line operators W n+ run to
infinity first along the light-cone plus direction n+, then transversely to that vector [4].

The correlator Ξ can be parametrized in terms of jet correlation functions through a Lorentz
covariant Dirac decomposition that utilizes the vectors l and n+, and is constrained by invariance
under parity and time reversal:

Ξ(l,n+) = ΛA1(l2)1+A2(l2)/l +
Λ2

k ·n+
B1(l2)/n+ , (1.3)
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where the scale Λ defines the power counting for the A and B functions. Up to twist 3, the jet
correlator is nothing else than the cut quark propagator, and the A1 and A2 functions can then be
interpreted in terms of its spectral representation

Ξ(l) =
∫

dσ
2[

σ J1(σ
2)111+ J2(σ

2) l/
] δ (l2−σ2)

(2π)3 , (1.4)

where σ2 can be interpreted as the invariant mass of the current jet, and the spectral (or “jet”)
functions Ji describe the jet mass distribution: (2π)3A1(l2) =

√
l2J1(l2)/Λ, and (2π)3A2(l2) =

J2(l2). As a consequence of positivity constraints and CPT invariance, the jet functions satisfy

J2(σ
2)≥ J1(σ

2)≥ 0 and
∫

∞

0
dσ

2J2(σ
2) = 1 . (1.5)

For later use, we also define the average (chiral-odd) jet mass

Mq =
∫

∞

0
dσ

2
σ J1(σ

2) , (1.6)

or, in other words, the mass acquired by the quark interacting with vacuum fluctuations. In general,
Mq > mq, and for light quarks we estimate Mq = O(100 MeV) [3].

2. Connecting single-hadron FFs and Jet Functions

In order to calculate the DIS cross section, it is useful to integrate the SIDIS cross section,
discussed up to twist 3 in Ref. [4], and use a set of momentum sum rules for single-hadron TMD
Fragmentation Functions (FFs) we are going to derive here. We take inspiration from Ref. [5, 6],
but connect the quark fragmentation correlator to the quark jet correlator, and extend the formalism
to include pure twist-3 FFs. The derivation is performed in the parton frame, where the quark has
transverse momentum lT = 0, and the hadron has a transverse momentum Ph⊥ relative to the quark.
The results are, nonetheless, frame independent because they only involve integrated FFs.

The starting point is the correlator for the fragmentation of a quark with momentum l into one
hadron of momentum Ph and spin Sh,

∆(l,Ph,Sh) =
∫ d4η

(2π)4 eil·η〈0|W n+
(∞,η)ψi(η)

(
a†

h(PhSh)ah(PhSh)
)
ψ j(0)W

n+
(0,∞)|0〉, (2.1)

with suitably defined staple-like Wilson lines W [4] and hadron creation and annihilation operators
a†

h and ah. It is then possible to show that

∑
h,Sh

∫
(dPh)Pµ

h ∆(l,Ph,Sh) =
∫ d4η

(2π)4 eil·η〈0|W n+
(∞,η)ψi(η)P̂µ

ψ j(0)W
n+
(0,∞)|0〉 , (2.2)

where P̂µ is the momentum operator [5] and (dPh) =
dP−h d2Ph⊥
2P−h (2π)3 the Lorentz-invariant integration

measure over the hadron momentum. Note that, as stressed in Ref. [6], this is only possible when
summing also over the hadron spin, and the ensuing sum rules are only valid for unpolarized FFs.

Next, we can make use of the eigenvalue equation in coordinate representation for the mo-
mentum operator, ψi(η)P̂ = i ∂

∂ηµ
ψi(η), and choose µ = − and µ = 1,2 to obtain, respectively,
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longitudinal and transverse sum rules. Integrating by parts, and taking into account that the fields
vanish at the boundary of the integration domain, we obtain:

∑
h,Sh

∫
(dPh)Pµ

h ∆(l,Ph,Sh) =

{
l−Ξ(l) for µ =− (longitudinal)

0 for µ = 1,2 (transverse)
(2.3)

From Eq. (2.3), which is the master result of this section, we can derive sum rules for un-
polarized quark TMD-FFs by taking suitable traces with Dirac matrices. For twist-2 FFs, in the
longitudinal and transverse sectors, respectively, we obtain

∑
h,Sh

∫
dzzD1(z) = 1 ∑

h,Sh

∫
dzzH⊥(1)1 (z) = 0 , (2.4)

where z = P−h /l−, and the superscript (1) stands for the first moment in P2
hT . These two sum rules

were originally introduced by Collins and Soper [5], and by Schäfer and Teryaev [7], respectively.
The following sum rules for twist-3 quark-quark functions are new:

∑
h,Sh

∫
dzE(z) =

Mq

Λ
∑
h,Sh

∫
dzD⊥(1)(z) = 0 (2.5)

∑
h,Sh

∫
dzH(z) = 0 ∑

h,Sh

∫
dzG⊥(1)(z) = 0 (2.6)

with the longitudinal ones in the left column, and the transverse ones in the right column. Finally,
using equation of motion relations [4], we can also obtain sum rules for pure twist 3 TMD-FFs:

∑
h,Sh

∫
dzẼ(z) =

Mq−mq

Λ
∑
h,Sh

∫
dzD̃⊥(1)(z) =

〈〈l2T 〉〉
2Λ2 (2.7)

∑
h,Sh

∫
dzH̃(z) = 0 ∑

h,Sh

∫
dzG̃⊥(1)(z) = 0 (2.8)

with the longitudinal rules on the left, and the transverse ones on the right. The sum rule for Ẽ was
introduced in Ref. [3], the others are new. Note that 〈〈l2T 〉〉 ≡ ∑h,Sh

∫
dzd2Ph⊥(P2

h⊥/z2)D1(z,Ph⊥)

can be interpreted as the average squared transverse momentum of the quark in the hadron frame.
All together, Eqs.(2.4)-(2.8) are a complete set of sum rules for unpolarized TMD-FFs up to twist-3.

3. Transversity in inclusive DIS

It is now time to insert the jet correlator inside the DIS handbag diagram, and calculate the
structure functions. In order to calculate g2, we also need to account for the quark-gluon-quark
correlators in Figs.1(b) and (c). The latter diagram and its Hermitian conjugate, considered for
the first time in [3], are essential to restore gauge invariance, which would otherwise be broken at
twist-3 by mq 6= Mq. Our results will be valid in a xB, Q2 region such that

M2
∞� Q2(1/xB−1)�M2

jet , (3.1)

where M∞ is the minimum invariant mass needed to utilize the completeness relation in the DIS
final state, and M2

jet is a jet mass scale of the order of M2
q or

∫
dσ2σ2J2(σ

2). The upper bound

3
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Figure 2: Different contributions to the non
Wandzura-Wilczek part of the proton g2 structure
functions compared to the JAM15 fit of g2 − gWW

2
(solid black) [9]. The quark and jet contributions are
shown with a dotted red and a dot-dashed green line
respectively, with uncertainty bands coming form the
Pavia15 fit of the transversity function [10]. The un-
certainty in the choice mq = 5 MeV and Mq = 100
MeV is not shown. The pure twist-3 piece by Braun
et al. [11] is shown as a dashed blue line. Note that
the jet contribution is plotted down to low values of
xB, even though one would expect it to be suppressed
at xB . Q2/(M2

∞ +Q2).

is necessary to guarantee the relevance of the jet correlators in Fig. 1, and implies a smaller and
smaller interval of validity in xB as Q2 increases. The lower bound is only necessary to guarantee
that the integrations of J1,2 over l+ = l2/(2l−) extend far enough so that one can apply the spectral
sum rules (1.5)-(1.6) and neglect jet mass corrections. Should this condition not be satisfied in
actual experiments, jet mass corrections may be handled according to Ref. [2].

As proposed in [3], rather than directly using the diagrams in Fig. 1, it is convenient to start
from the semi-inclusive one, that has already been studied up to twist-3 level [4]. Then, integrating
over hadron momenta, summing over flavors and spins, and taking advantage of the longitudinal
sum rules derived in Section 2, one obtains

FT (xB) = xB ∑
q

e2
q f q

1 (xB), FL(xB) = 0, FLL(xB) = xB ∑
q

e2
q gq

1(xB), (3.2)

FsinφS
UT (xB) = 0, FcosφS

LT (xB) =−xB ∑
q

e2
q

2M
Q

(
xBgq

T (xB)+
Mq−mq

M
hq

1(xB)

)
, (3.3)

where f q
1 , gq

1 and hq
1 are, respectively, the unpolarized, polarized, and transversity PDFs. The

vanishing of FsinφS
UT (xB) = ∑h,Sh

∫
dzFh,sinφS

UT (xB,z), known as Diehl-Sapeta sum rule [8], is derived
here for the first time at the correlator level. The second term in FcosφS

LT (xB), that is not suppressed
as an inverse power of Q compared to the standard gT term, was already unveiled in Ref. [3]. In a
perturbative calculation, one would obtain Mpert

q = mq and the new term would vanish.
The new transversity-dependent coupling also contributes to the more conventional g2 struc-

ture function, as can be seen by applying the methods discussed in Ref. [12]:

g2(xB)−gWW
2 (xB) =

1
2 ∑

a
e2

a

(
gtw−3

2 (xB)+
mq

M

(
hq

1
x

)?

(xB)+
Mq−mq

M
hq

1(xB)

xB

)
, (3.4)

where f ∗(x)≡− f (x)+
∫ 1

x dy f (y)/y, gWW
2 = g∗1 is the Wandzura-Wilczek pure twist 2 chiral-even

term, and gtw−3
2 (xB) is a “pure twist-3” function that only depends on quark-gluon-quark matrix

elements. The novelty is the last, jet mass dependent term. This is shown in Fig. 3 to poten-
tially have a size comparable to the other terms, although in absence of theoretical calculations or
experimental determinations, we can only use a rough Mq = O(100 MeV) estimate for now [3].
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The new term also breaks the Burkhardt-Cottingham sum rule:∫ 1

0
dxBg2(xB) = ∆BC . (3.5)

Trusting Eq. (3.4) down to xB = 0, we would obtain a divergent ∆BC =
Mq−mq

M

∫ 1
0 dx h1(x)

x (assuming
h1 ∝ x−εg with εg =

√
αsNc/π ≈ −0.56 as for the non-singlet part of g1 [13]). Fortunately, the

kinematic limitation in Eq. (1.1) on the final state invariant mass eases off as xB→ 0, and one can
use the completeness relation to recover the standard result without the new jet term. Thus, ∆BC is
likely to be finite, with a Q2 dependence that reflects the magnitude of the M∞ scale.
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