First extraction of Transversity from electron-proton and proton-proton data

Marco Radici*
INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
E-mail: marco.radici@pv.infn.it

We present the first extraction of the transversity distribution based on the global analysis of pionpair production in deep-inelastic scattering and in proton-proton collisions with one transversely polarized proton. The extraction relies on the knowledge of di-hadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the chiral-odd transversity is extracted from a global analysis similar to what is usually done for the chiral-even spin-averaged and helicity distributions. The knowledge of transversity is important among other things for detecting possible signals of new physics in high-precision low-energy experiments.

[^0]
1. Introduction

The transversely polarized parton distribution h_{1} (transversity) is the least known of parton distribution functions (PDFs) because it is not diagonal in the helicity basis (in jargon, it is a chiral-odd function). As such, h_{1} is suppressed in simple processes like inclusive deep-inelastic scattering (DIS). It can be measured only in processes with at least two hadrons: semi-inclusive DIS (SIDIS) or hadronic collisions. On the other hand, transversity is interesting because its first Mellin moment, the so-called tensor charge, can be useful to search for effects from physics beyond the Standard Model (BSM) [1].

In this work, we want to access the transversity PDF at leading twist and in the standard framework of collinear factorization. We consider the semi-inclusive production of two hadrons with small invariant mass, where there is a correlation between the transverse polarization of the quark directly fragmenting into the two hadrons and their transverse relative momentum [2]. In this case, the di-hadron SIDIS cross section (once integrated over partonic transverse momenta) contains a specific modulation in the azimuthal orientation of the plane containing the momenta of the two hadrons. The coefficient of this modulation is the simple product $h_{1} H_{1}^{\varangle}$ where H_{1}^{\varangle} is a chiral-odd di-hadron fragmentation function (DiFF) quantifying the above correlation [3, 4]. The function H_{1}^{\varangle} can be independently determined by looking at correlations between the azimuthal orientations of two hadron pairs in back-to-back jets in $e^{+} e^{-}$annihilation [5, 6, 7]. The advantage of this method is that collinear factorization makes it possible to isolate the same combination $h_{1} H_{1}^{\varangle}$ also in proton-proton collisions [8], giving rise to an azimuthally asymmetric distribution of the final hadron pair when one of the two initial protons is transversely polarized.

Experimental data for the SIDIS asymmetry in the azimuthal distribution of final $\left(\pi^{+} \pi^{-}\right)$pairs were collected by the HERMES collaboration for a proton target [9], and by the COMPASS collaboration for both protons and deuterons [10, 11]. The azimuthal asymmetry in the distribution of back-to-back $\left(\pi^{+} \pi^{-}\right)$pairs in $e^{+} e^{-}$annihilation was measured by the BELLE collaboration [12], opening the way to the first parametrization of H_{1}^{\varangle} [6]. In turn, this result was used in combination with the SIDIS data to extract the valence components of h_{1} [13, 14]. Recently, the STAR collaboration released the first results for the predicted asymmetry in the azimuthal distribution of $\left(\pi^{+} \pi^{-}\right)$pairs produced in proton-proton collisions with a transversely polarized proton [15]. Here, we discuss the extraction of the transversity PDF h_{1} from a global fit of all these data for the semi-inclusive production of $\left(\pi^{+} \pi^{-}\right)$pairs. The final results have been published in Ref. [16].

2. Formalism

The relevant observables for our global fit are the following.
For SIDIS on a transversely polarized hadron target, at leading twist the cross section contains the azimuthally asymmetric term $\sin \left(\phi_{R}+\phi_{S}\right) h_{1} H_{1}^{\varangle}$, where ϕ_{R} and ϕ_{S} are the azimuthal angles with respect to the scattering plane of the pair relative momentum and target polarization vector, respectively. The corresponding single-spin asymmetry is described in detail in Refs. [13, 14].

The H_{1}^{\varangle} can be extracted from the electron-positron annihilation process leading to two correlated hadron pairs in opposite hemispheres. Again at leading twist, the cross section contains the azimuthally asymmetric term $\cos \left(\phi_{R}+\bar{\phi}_{R}\right) H_{1}^{\varangle} \bar{H}_{1}^{\varangle}$, where the barred quantities refer to the corresponding antiquark emerging from the $e^{+} e^{-}$annihilation. From this, we can construct the so-called

Artru-Collins asymmetry [5, 6], and extract the H_{1}^{\varangle} by summing upon all pairs in one hemisphere, involving the number density of fragmenting (un)polarized quarks [6].

Lastly, at leading order in the hard scale for proton-proton collisions with one transversely polarized proton the cross section contains the azimuthally asymmetric term $\sin \left(\phi_{S}-\phi_{R}\right) f_{1}^{a} \otimes h_{1}^{b} \otimes$ $d \sigma_{a b^{\uparrow} \rightarrow c^{\uparrow} d} \otimes H_{1}^{\varangle c}$, where ϕ_{S}, ϕ_{R} have the same meaning as before but with respect to the reaction plane of the collision process, and $d \sigma$ is the elementary cross section for the annihilation of a parton a with a transversely polarized parton b into the transversely polarized parton c and d (summing over all undetected d). This term leads to the spin asymmetry described in Ref. [8]. Despite working in the collinear framework, the elementary combination $h_{1} H_{1}^{\varangle}$ happens convoluted with other ingredients in the numerator of such asymmetry, making its repeated computation very demanding for a global fit. In order to speed up the execution of the fitting code, the well known workaround is to rewrite the parametric part of the integrand (in our case, the transversity) in terms of its Mellin anti-transform, such that most of the integrals can be computed before the minimization. In order to exploit this workaround, it is crucial that the Mellin transform of h_{1} can be analytically calculated at any scale. To this purpose, we have chosen the following functional form for the valence component q_{v} at the starting scale $Q_{0}^{2}=1 \mathrm{GeV}^{2}$:

$$
\begin{align*}
x h_{1}^{q_{v}}\left(x, Q_{0}^{2}\right) & =F^{q}(x) F_{\mathrm{SB}}^{q}(x), \tag{2.1}\\
F_{\mathrm{SB}}^{q}(x) & =N_{\mathrm{SB}}^{q} x^{a_{q}}(1-x)^{b_{q}}\left(1+c_{q} \sqrt{x}+d_{q} x+e_{q} x^{2}+f_{q} x^{3}\right), \tag{2.2}\\
F^{q}(x) & =N_{F}^{q} \frac{\mathscr{F}^{q}(x)}{\max _{x}\left[\left|\mathscr{F}^{q}(x)\right|\right]}, \quad \mathscr{F}^{q}(x)=x^{A_{q}}\left[1+B_{q} T_{1}(x)+C_{q} T_{2}(x)+D_{q} T_{3}(x)\right] . \tag{2.3}
\end{align*}
$$

The $F_{\text {SB }}$ in Eq. (2.2) is a fit to the Soffer bound at Q_{0}^{2}, whose analytic expression is listed in the appendix of Ref. [13]. Using the parameters listed in Tab.I of Ref. [16], the accuracy is of order 1\% in the range $0.001 \leq x \leq 1$. In Eq. (2.3), the $T_{n}(x)$ are the Cebyshev polynomials of order n. The $N_{F}^{q}, A_{q}, B_{q}, C_{q}, D_{q}$, are the fitting parameters. In fixed-target SIDIS experiments, only the valence components of transversity can be accessed [13]; hence, we have in total 10 free parameters. If we impose the constraint $\left|N_{F}^{q}\right| \leq 1$, then $\left|F^{q}(x)\right| \leq 1$ for all x, and the $h_{1}^{q_{v}}$ in Eq. (2.1) automatically satisfies the Soffer inequality at any scale. Another constrain comes from the low- x behavior of transversity, which from the above equations looks like $x h_{1}^{q_{v}}(x) \approx x^{A_{q}+a_{q}}$. For the given a_{q}, the parameter A_{q} is strongly constrained by requiring that the tensor charge $\delta q\left(Q^{2}\right)$ is finite. We numerically evaluate the Mellin moment in the range $\left[10^{-6}, 1\right]$. In order to avoid uncontrolled extrapolation errors at $0 \leq x<10^{-6}$, we impose the condition $A_{q}+a_{q}>1 / 3$, which also grants that δq is evaluated at 1% accuracy.

The statistical uncertainty of the global fit is studied at the 90% confidence level using the same bootstrap method as in our previous fits [13, 14]. In the analysis of di-hadron $e^{+} e^{-}$data, the unconstrained gluon channel is assumed $D_{1}^{g}\left(Q_{0}^{2}\right)=0$. We parametrize this error by computing the asymmetry also with $\left.D_{1}^{g} Q_{0}^{2}\right)=D_{1}^{u}\left(Q_{0}^{2}\right) / 4$, or $D_{1}^{u}\left(Q_{0}^{2}\right)$. We have verified that these choices alter the χ^{2} of the $e^{+} e^{-}$fit in Ref. [6] by $10-50 \%$, keeping always $\chi^{2} /$ d.o.f. $\lesssim 2$. The number M of replicas is fixed by reproducing the mean and standard deviation of the original data points. For each option, it turns out that 200 replicas are sufficient. Hence, we have in total $M=600$ replicas.

3. Results

In Fig. 1, the transversity $x h_{1}$ is displayed as a function of x at $Q^{2}=2.4 \mathrm{GeV}^{2}$. The blue

Figure 1: The transversity $x h_{1}$ as a function of x at $Q^{2}=2.4 \mathrm{GeV}^{2}$. Blue lines represent the Soffer bounds. Cyan bands for the global fit of this work including all options $D_{1}^{g}\left(Q_{0}^{2}\right)=0, D_{1}^{u}\left(Q_{0}^{2}\right) / 4$ and $D_{1}^{u}\left(Q_{0}^{2}\right)$. Left panel for valence up quark: comparison with our previous fit in Ref. [14] (pink band). Right panel for valence down quark: comparison with this global fit with only $D_{1}^{g}\left(Q_{0}^{2}\right)=0$ (darker pink band in the foreground).
lines represent the Soffer bounds. The left panel refers to the valence up component. Here, the pink band corresponds to our previous fit with only SIDIS and $e^{+} e^{-}$data [14]. The cyan band is the new global fit discussed here, including all options $D_{1}^{g}\left(Q_{0}^{2}\right)=0, D_{1}^{g}\left(Q_{0}^{2}\right)=D_{1}^{u}\left(Q_{0}^{2}\right) / 4$ and $D_{1}^{g}\left(Q_{0}^{2}\right)=D_{1}^{u}\left(Q_{0}^{2}\right)$. It turns out that this result is insensitive to the various choices for $D_{1}^{g}\left(Q_{0}^{2}\right)$ [16]. There is an evident gain in precision by including also the STAR $p-p$ data. The uncertainty of our previous fit in Ref. [14] (the pink band) is comparable to the one obtained from the analysis of the Collins effect [17, 18]. Hence, we deduce that the outcome of our global fit provides a substantial increase in the precision on $h_{1}^{u_{v}}$ and on the related tensor charge δu with respect to all the other phenomenological extractions.

The right panel of Fig. 1 refers to the valence down component. Again, the cyan band corresponds to the new global fit including all options for $D_{1}^{g}\left(Q_{0}^{2}\right)$. The darker pink band in the foreground shows how the result is modified by including only the option $D_{1}^{g}\left(Q_{0}^{2}\right)=0$. Evidently, the valence down component $h_{1}^{d_{v}}$ is very sensitive to D_{1}^{g}, in particular through the cross section for $p-p$ collisions. Data on $\left(\pi^{+} \pi^{-}\right)$multiplicities in $p-p$ collisions would be very useful. Finally, we notice that the unnatural behavior of $h_{1}^{d_{v}}$ at $x \gtrsim 0.1$ obtained in Ref. [14] has disappeared. Hence, the STAR data have a significant impact on our knowledge of transversity.

Figure 2: The tensor charges at $Q^{2}=4 \mathrm{GeV}^{2}$ and 90% confidence level. Blue point (label 1) for this global fit, red point (label 2) from Ref. [17], magenta point (label 3) from Ref. [18], green point (label 4) from Ref. [19], black points (labels 5 and 6) from Ref. [20] and [21], respectively. Left panel for valence up quark, right panel for valence down quark.

In Fig. 2, we show the tensor charge δq at $Q^{2}=4 \mathrm{GeV}^{2}$ and 90% confidence level. The upper left panel refers to the up quark δu, the upper right panel to the down quark δd. In all panels, the
blue point with label 1 is the result of this global fit, the red point with label 2 is the result of the phenomenological extraction based on the Collins effect in the transverse-momentum dependent framework [17], the magenta point with label 3 is also based on the Collins effect but in an extended parton model framework [18], the green point with label 4 is the result obtained with a nested Monte Carlo iterative approach to the Collins effect but with the additional constraint to reproduce the lattice results for the isovector tensor charge $g_{T}=\delta u-\delta d$ [19], the black points with labels 5 and 6 are the latest lattice results from the PNDME [20] and ETMC [21] collaborations. Our results seem in very good agreement with other phenomenological extractions except for Ref. [19] on δd. In general, there seems to be compatibility between lattice simulations and phenomenology only for δd but not for δu (and, similarly, for g_{T}). In particular, it seems that for δu the more precise the phenomenological extractions are the larger the deviation is from lattice. But before claiming that there is a "transverse spin puzzle", more work is needed along both lines of improving the precision of phenomenological extractions and of benchmarking lattice simulations. Indeed, a careful determination of δq is of paramount importance in detecting BSM effects [1].

4. Conclusions

In summary, we have presented a new phenomenological extraction of the transversity distribution in the framework of collinear factorization by performing for the first time a global fit of all data for the semi-inclusive production of charged pion pairs in deep-inelastic scattering, electronpositron annihilation, and proton-proton collisions. The uncertainty on the result for the valence up quark is smaller than any previous extraction. The large sensitivity of the valence down quark to the unconstrained gluon channel in di-hadron fragmentation calls for data on pion pair multiplicities, particularly in proton-proton collisions which are yet missing. The calculated (isovector) tensor charge seems compatible with most phenomenological extractions but not with lattice calculations.

Acknowledgments

Most of the results presented in this report have been carried out in collaboration with A. Bacchetta, to whom I am deeply indebted. This research is partially supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 647981, 3DSPIN).

References

[1] A. Courtoy, S. Baessler, M. Gonzalez-Alonso, and S. Liuti, Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology, Phys. Rev. Lett. 115 (2015) 162001, [arXiv:1503.0681].
[2] J. C. Collins and G. A. Ladinsky, On $\pi-\pi$ correlations in polarized quark fragmentation using the linear sigma model, http://arXiv.org/abs/hep-ph/9411444.
[3] A. Bianconi, S. Boffi, R. Jakob, and M. Radici, Two-hadron interference fragmentation functions. i : General framework, Phys. Rev. D62 (2000) 034008, [http://arXiv.org/abs/hep-ph/9907475].
[4] M. Radici, R. Jakob, and A. Bianconi, Accessing transversity with interference fragmentation functions, Phys. Rev. D65 (2002) 074031, [http: / /arXiv.org/abs/hep-ph/0110252].
[5] D. Boer, R. Jakob, and M. Radici, Interference fragmentation functions in electron positron annihilation, Phys. Rev. D67 (2003) 094003, [hep-ph/0302232].
[6] A. Courtoy, A. Bacchetta, M. Radici, and A. Bianconi, First extraction of Interference Fragmentation Functions from $e^{+} e^{-}$data, Phys.Rev. D85 (2012) 114023, [arXiv:1202.0323].
[7] H. H. Matevosyan, A. Bacchetta, D. Boer, A. Courtoy, A. Kotzinian, M. Radici, and A. W. Thomas, Semi-inclusive production of two back-to-back hadron pairs in $e^{+} e^{-}$annihilation revisited, Phys. Rev. D97 (2018), no. 7 074019, [arXiv:1802.0157].
[8] A. Bacchetta and M. Radici, Dihadron interference fragmentation functions in proton- proton collisions, Phys. Rev. D70 (2004) 094032, [hep-ph/0 409174].
[9] HERMES Collaboration, A. Airapetian et al., Evidence for a Transverse Single-Spin Asymmetry in Leptoproduction of pi+pi-Pairs, JHEP $\mathbf{0 6}$ (2008) 017, [arXiv: 0803.2367].
[10] COMPASS Collaboration, C. Adolph et al., Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering, Phys.Lett. B713 (2012) 10-16, [arXiv:1202.6150].
[11] COMPASS Collaboration, C. Adolph et al., A high-statistics measurement of transverse spin effects in dihadron production from muon-proton semi-inclusive deep-inelastic scattering, Phys.Lett. B736 (2014) 124-131, [arXiv:1401.7873].
[12] Belle Collaboration Collaboration, A. Vossen et al., Observation of transverse polarization asymmetries of charged pion pairs in $e+e$ - annihilation near sqrt $s=10.58$ GeV, Phys.Rev.Lett. 107 (2011) 072004, [arXiv:1104.2425].
[13] A. Bacchetta, A. Courtoy, and M. Radici, First extraction of valence transversities in a collinear framework, JHEP 1303 (2013) 119, [arXiv: 1212.3568].
[14] M. Radici, A. Courtoy, A. Bacchetta, and M. Guagnelli, Improved extraction of valence transversity distributions from inclusive dihadron production, JHEP 05 (2015) 123, [arXiv:1503.0349].
[15] STAR Collaboration, L. Adamczyk et al., Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in $p^{\uparrow}+p$ at $\sqrt{s}=200$ GeV, Phys. Rev. Lett. 115 (2015) 242501, [arXiv:1504.0041].
[16] M. Radici and A. Bacchetta, First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data, Phys. Rev. Lett. 120 (2018), no. 19 192001, [arXiv:1802.0521].
[17] Z.-B. Kang, A. Prokudin, P. Sun, and F. Yuan, Extraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD Evolution, Phys. Rev. D93 (2016), no. 1 014009, [arXiv:1505.0558].
[18] M. Anselmino, M. Boglione, U. D'Alesio, S. Melis, F. Murgia, et al., Simultaneous extraction of transversity and Collins functions from new SIDIS and e $e+e$ - data, Phys.Rev. D87 (2013) 094019, [arXiv:1303.3822].
[19] H.-W. Lin, W. Melnitchouk, A. Prokudin, N. Sato, and H. Shows, First Monte Carlo global analysis of nucleon transversity with lattice QCD constraints, arXiv:1710.0985.
[20] T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, H.-W. Lin, and B. Yoon, Axial, Scalar and Tensor Charges of the Nucleon from 2+1+1-flavor Lattice QCD, Phys. Rev. D94 (2016), no. 5 054508, [arXiv:1606.0704].
[21] C. Alexandrou et al., Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass, Phys. Rev. D95 (2017), no. 11 114514, [arXiv:1703.0878].

[^0]: *Speaker.

