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1. Introduction

In the last 10-20 years, there has been a paradigm shift in fully exclusive simulations for
collider processes. Essentially moving from the description of data to the prediction of cross
sections and differential distributions. The incorporation of physics based on first principles,
such as perturbation theory in QCD, allowed for this improved accuracy. While even leading
order (LO) multi-jet merging [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] was rarely used for predictions be-
fore the start of the LHC, currently many analyses next-to-leading order (NLO) multi-jet merg-
ing [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] has become the new standard. The accuracy of
these predictions in unprecedented and allows for a precise scrutiny of all aspects of collider data,
with the ultimate goal to either confirm the Standard Model of particle physics also at the energies
available at the LHC, or to find physics beyond it.

In this talk, three recent developments will be discussed in more detail: MINLO results for
Higgs boson production with up to two jets at NLO accuracy, EW corrections and recent develop-
ments towards incorporating NLO splitting functions in parton showers.

2. MINLO approach as a way to NNLOPS predictions

Typically, when integrating matrix elements with light partons in the final state over the com-
plete phase space, divergences appear that need to be removed. Most commonly these are removed
by requiring a number of jets —defined through an IR-safe jet algorithm— equal to the number
of light final state partons in the Born-level contributions to the process, essentially removing the
problematic phase space regions. This makes generating accurate and consistent event samples,
that can be directly compared to data, independently from the number of jets a formidable task.

One way to solve the above task has been proposed in ref. [21]. This MINLO method allows
one to render an NLO calculation for a B+1jet process also NLO accurate for B observables that
are completely inclusive over the extra jets (with B a massive colourless system of particles). The
general idea is to damp the singularities coming from soft and/or collinear Born-level partons by
a suitable Sudakov form factor dampening. By incorporating exactly the right (subset of) higher-
order contributions into this form factor, it can be shown that after expanding the results, no terms
hamper the NLO accuracy of the observable inclusive in B production.

In the original approach, the precise form of the Sudakov form factor was derived analytically.
This allowed for predictions for W/Z/H/HW/HZ/WW production [21, 23, 24, 25]. In all these
approaches it was possible to only cover up to one extra jet, i.e. starting from the NLO B+1jet
predictions also the B inclusive observables become NLO accurate. With an additional reweighting
over the Born variables, these results could even be made NNLO+PS accurate [26, 27, 23, 25, 28].

While the higher order terms in the Sudakov form factor that are needed to get NLO accuracy
for the underlying B process are rather simple, this is no longer true for more involved processes.
Therefore, in ref. [29] an alternative method was developed. Instead of computing the higher order
terms, they are fitted, by imposing that, after integrating over the radiative phase-space, the B+1jet
process becomes equal to the B process, in the complete B phase-space. This allows one to deter-
mine the required higher order Sudakov terms. In ref. [29] this was applied to Higgs production
in gluon fusion. In particular, the start is an NLO calculation for H+2jets, which was made also
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NLO accurate in H+1jet observables. The latter are already part of an NNLO+PS calculation for
Higgs production [30]. In short, this allows one to have NLO accuracy for H+2jets and H+1jet and
NNLO accuracy for inclusive H observables.1

The most interesting result from this exercise is the plot of fig. 1. In this plot, the transverse
momentum of the Higgs boson is plotted, requiring two additional jets in the event, vetoing events
with more or fewer jets. In the left panel, three predictions are shown: in red are the new extended
MINLO results, in green the central value of the NNLOPS calculation for inclusive H production
and in blue the predictions for H+2jets are shown. The latter contains Sudakov resummation, but
is formally not NLO accurate for lower multiplicity observables. In the three panels on the right,
the ratio w.r.t. the three central values is taken, respectively. The coloured band is the uncertainty
coming from scale variations in the respective results. As expected, when the transverse momentum
of the Higgs boson is small (compared to the typical transverse momenta of the jets) the extended
MINLO results agree with the calculation for H+2jets. However, when the transverse momentum
of the Higgs gets larger, the events are dominated by the Higgs recoiling against a hard jet, that
either splits into two, or radiates a softer secondary jet. The latter approach is better described
by the NLO predictions for H+1jet: indeed, the extended MINLO results agree with the NNLOPS
results for inclusive H production. A much larger set of results and comparisons can be found in
Ref. [29].
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Figure 1: Transverse momentum distribution of the Higgs boson in 2-jet events. Jets are here constructed
according to the anti-kt clustering algorithm, for a radius parameter R = 0.4. Jets are required to have
transverse momentum pT ≥ 30 GeV and rapidity |y| ≤ 4.4. Figure taken from ref. [29]

3. EW corrections

Naively, by comparing the size of the coupling constants, the EW corrections O(α) are of
the same size as the NNLO QCD corrections O(α2

s ). On top of that, in certain regions of phase
space, the EW correction can be much larger than expected from the size of the coupling constant.
In particular, close to EW resonances radiation from the decay products results in sizeable effects.
Also, with large invariants, EW Sudakov corrections can be large, enhancing the EW corrections

1Very recently, the same method was also applied to t-channel single-top production [31].
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to be of similar size, or even larger than NLO QCD corrections. Hence, not only when extreme
accuracy is required, but also for tails of distributions, EW corrections are important.

Only for the most simple process, a consistent combination of EW corrections and parton
showers is available [32, 33, 34]. On the other hand, recently a lot of progress went in the au-
tomation of the computation of EW corrections to any collider process, see e.g. ref. [35]. However,
the automation of the matching of NLO EW corrections to parton showers is an unsolved prob-
lem, even though some approximated results are on the market, mostly pursued within the Sherpa
framework [36, 37, 38].

In particular in ref. [37] the pp→ 2l2ν processes are studied. Both NLO QCD and EW correc-
tions are included. Most interestingly, in a comparison to the exact NLO EW results, two methods
of including the resummation of (soft) photons is included. One based on the YFS resummation
principle [39], and another on a (dipole) parton shower [40]. In fig. 2 the invariant mass of the 4-
lepton system is shown, making use of the MC truth to reconstruct the neutrino momenta. As can
be seen from the lower left inset, both in the low invariant mass, as well as the large invariant mass
regions, the EW corrections are dominating over the QCD ones. In the low invariant mass, this is
mostly coming from radiation from the final state leptons, that decrease the 4-lepton invariant mass.
A small shift in invariant masses close to resonance peaks can lead to large effects, in particular just
below resonance peaks. At large invariant masses, the EW Sudakov logarithms become important,
showing −50% effects around mllνν = 5 TeV.

The approximated version of the EW corrections do not include hard photon radiation; rather
all real-emission contributions are removed, together with the divergent part of the virtual correc-
tions as well as some of the finite terms in the virtual corrections. Of course, this procedure has a
great amount of freedom; even so, the results can be compared to the exact results and one finds
rather convincing results.

Due to the omission of the photon radiative contributions, when comparing the approximated
NLO QCD×EW to the exact result (dashed red curve in the lower right ratio plot) the large en-
hancements close at low invariant mass mostly disappear. However, including the CSS shower
(dotted green curve) to reinstate the photon radiation, the predictions overestimate the exact results
by significant amounts. This is due to the fact that the recoil of the photon changes the invariant
masses of all (pairs of) particles in the process. The YFS method (solid purple curve), however,
keeps the pair-invariant masses fixed, and using that to fill-up the photon radiation brings the final
predictions much closer to the exact results.

4. Towards NLO parton showers

Parton showers are based on LO splitting functions. By exponentiation and re-interpretation
them as splitting probabilities, a statistical model for the splitting of partons is constructed. Even
though formally only the complete LO information is included, some large NLO terms are con-
sidered as well, most importantly due to the choice of renormalisation scale that enters the strong
coupling as well as through exact momentum conservation. Recently, some great improvements
have been made to include complete NLO splitting functions. In particular, this requires one to
move away from the traditional 1 → 2 (or 2 → 3) branching functions and include 1 → 3 (or
2→ 4) functions as well.
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Figure 13. Distribution in the invariant mass of the matching lepton-neutrino pair, m`⌫ , for pp !
e+µ�⌫e⌫̄µ at 13 TeV. Details as in Fig. 9.
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Figure 14. Distribution in the invariant mass of all four final state leptons and neutrinos, m``⌫⌫ , for
pp ! e+µ�⌫e⌫̄µ at 13 TeV. Details as in Fig. 9.

– 19 –

Figure 2: Distribution in the invariant mass of all four final state leptons and neutrinos, mllνν , for pp→
e+µ−νeν̄µ at 13 TeV. The left panel shows the absolute predictions and relative corrections with respect to
LO. The bands correspond to factor-two scale variations. The upper- right panel shows the effect, at NLO
QCD×EW level, of switching off photon-induced contributions or applying photon densities from different
current PDFs, while using quark and gluon densities from the nominal CT14qed set throughout. The lower-
right ratio shows the level of agreement of the NLO QCD×EW(approx), NLO QCD×EW(approx)⊗YFS
and NLO QCD×EW(approx)⊗CSS approximations with the exact NLO QCD×EW calculation. Figure
taken from ref. [37]

In ref. [41] it was shown that the inclusion of two consecutive 2→ 3 branching together with
a direct 2→ 4 can be consistently included in the Vincia program. In particular the inclusion of
2→ 4 branchings opens a phase-space region beyond what can be obtained by strongly ordered
2→ 3 branchings. Moreover, the implementation results in smooth and consistent predictions
for differential cross sections, proving that the interplay between 2→ 3 and 2→ 4 branching is
understood.

In ref. [42] the complete NLO DGLAP evolution has been implemented within the DIRE
parton shower framework, which is available in both Sherpa and Pythia8. However, only in a
leading colour and the soft emissions are only LO accuracy. Moreover, given the recent criticism
on the DIRE shower [43], the completeness and exactness of the implementation remains an open
question, which should be addressed in the near future.

5. Conclusions

In this talk, I have focussed on three topics that have received considerable attention in the last
year(s).

The first topic is a path to the inclusion of NNLO corrections for processes matched to parton
showers. By inclusion of suitable terms in a Sudakov form factor event samples can be simulta-

4



P
o
S
(
D
I
S
2
0
1
8
)
2
3
8

Multi-leg Calculation Rikkert Frederix

neously accurate in B+1jet and B observables. A recent development there is to fit these terms
numerically by enforcing the NLO accuracy of observables inclusive over radiation. Having both
NLO accuracy for B+1jet and B observables allows one to include NNLO contributions by a simple
reweighting in the B phase space to the NNLO predictions for those observables.

The second topic discussed the EW corrections. Recently these have been automated for fixed
order predictions. However, when matching to the parton shower, approximations need to be made.
First results look promising, but the approximations need to be understood further.

Finally, replacing the LO splitting functions in the parton shower by NLO accurate ones is an
ongoing project. Major breakthroughs in the understanding of many of the important issues have
recently been made.

In the recent years a lot freedom in tuning the partons showers has been replaced by accurate
theory predictions resulting in more predictive power, better control on systematic uncertainties
and a greater trust in our measurements. With the availability of the above above improvements in
the near future a big step in improving the accuracy of predictions will be taken once again.
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