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1. Introduction

Chiral dynamics is a pretty mature field. We have high-precision calculations and tests in the
ππ and πN systems, that is in the two-flavor sector of the light up and down quarks. This is largely
based on a fruitful marriage of chiral perturbation theory (CHPT) with dispersion theory. In case
of pion-pion scattering, such a scheme also allows one to pin down precisely the parameters of the
lightest resonances in QCD. There is also much progress in lattice QCD. However, especially in
the sector with baryon number B ≥ 1, there is still a lack of calculations of scattering processes,
not even to talk about precision. The situation in the three-flavor sector remains ambiguous as
ms ∼ ΛQCD. Still, there is some marked progress in eta and kaon decays. When it comes to
baryons, the most urgently needed calculation concerns the flavor-singlet piece of the pion-nucleon
σ -term, σ0, as I will discuss later. In this context, the lattice can and does provide numbers on
the strange matrix element ms〈p|s̄s|p〉, which nicely complements the dispersive determination of
σπN . Furthermore, unitarization schemes offer insight into excited states, though at some cost. In
often used approximations, the analytical structure is not always respected, so improvements of the
method for coupled channels are required. Nevertheless, there has been some remarkable progress
in heavy-light systems combining unitarized CHPT, lattice QCD results and accurate data. In what
follows, I give more details on some of these statements but the reader is advised to consult the
many fine talks given at this workshop for further discussions and references.

2. Lesson 1: Once more on the ππ scattering length a0

Elastic pion-pion scattering (ππ → ππ) is the purest process in two-flavor chiral dynamics as
the up and the down quark masses are really small compared to any other hadronic mass scale. At
threshold the scattering amplitude is given in terms of two numbers, the scattering lengths a0 and
a2. In my 2012 talk [1], I had reviewed the experimental and the theoretical status, concluding:
“This is truly one of the finest tests of the Standard Model at low energies. However, not all is
well – a direct lattice determination of a0 is still missing and the lattice practitioners are urged to
provide this so important number. Such a calculation is, of course, technically challenging because
of the disconnected diagrams, but time is ripe for doing it.” Since then, only two groups [2, 3]
have published results on this so important quantity, summarized in Tab. 1. Both of these are con-
sistent with the high-precision result from Roy equations, a0 = 0.220±0.005 [4], but presumably
underestimate the systematic errors. There have also been very nice lattice calculations concern-
ing the S-wave, isospin-zero ππ phase shifts and the f0(500) (sigma) meson [5, 6], but these do
not give values for a0. To get a better handle on the disconnected diagrams, connected and dis-

Author(s) a0 Fermion action Pion mass range
Fu [2] 0.214(4)(7) asqtad staggered 240 - 430 MeV
Liu et al.[3] 0.198(9)(6) twisted mass 250 - 320 MeV

Table 1: Lattice QCD determinations of a0.
.

connected contractions in ππ scattering have been analyzed in Ref. [7]. There are four types of
contractions, namely the connected ones, called direct (D) and crossed (C) contractions, the singly
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︸ ︷︷ ︸
Direct

︸ ︷︷ ︸
Crossed

︸ ︷︷ ︸
Rectangular

︸ ︷︷ ︸
Vacuum

Figure 1: Types of Wick contractions in pion-pion scattering.

disconnected ones of rectangular (or roasted Peking duck1) type (R) and the doubly disconnected
vacuum graphs (V), which are most difficult to calculate in lattice QCD, cf. Fig. 1. By means
of partially-quenched chiral perturbation (PQCHPT) theory [8, 9, 10, 11], one can distinguish and
analyze the effects from different types of contraction diagrams to the pion-pion scattering ampli-
tude, in particular also to a0. The findings of Ref. [7] can be summarized as follows: The R and
C-type diagrams are leading order (LO) in the chiral and the large-NC expansion, see also [12],
whereas the D- and V-type diagrams are next-to-leading order (NLO) in the chiral and the large-NC

expansion. As expected, the R-type diagram dominates when it contributes (as is the case for a0),
while neglecting the V-type contribution reduces a0 by about 12%.

This program was recently carried further in Ref. [13]. One has to make a direct connection
to the energy levels measured in lattice QCD. This can be achieved in the following way: First,
each contraction in ππ scattering can be represented by a physical scattering process between two
pions in SU(4|2) partially quenched QCD. Then, the multi-channel scattering matrix can be diag-
onalized to obtain four effective single-channel scattering amplitudes. Two of these (labeled α,β )
involve only connected contractions and the others (called γ,δ ) contain disconnected pieces. With
that, one can immediately relate the threshold parameters of each single-channel scattering ampli-
tude to the corresponding discrete energy levels in a finite volume through the usual single-channel
Lüscher formula. Further, the threshold parameters can be expressed in terms of physical and un-
physical LECs in the SU(4|2) PQCHPT, which can be fitted to discrete energy levels extracted
from the connected ππ correlation functions. In particular, fitting to certain data form the Euro-
pean Twisted Mass Collaboration [14], one achieves an order-of-magnitude improvement over the
earlier result [15] in the determination of the LECs combination 3LPQ,r

0 +LPQ,r
3 . Performing lattice

computations using more volumes, one can also improve the precision of the worst known LEC
LPQ,r

0 . With these fitted LECs one is able to predict the discrete energy shifts δEγ,δ
0 , which involve

disconnected contractions, as functions of the lattice size. For more details, see [13].

3. Lesson 2: The width of the lightest baryon resonances

In this section, I will be concerned with calculating the width of the two lightest baryon reso-
nances, the ∆(1232) and the Roper N∗(1440). This might at first sight appear irritating, as imagi-
nary parts are usually not precisely reproduced in CHPT. For that simple reason, one has to employ
a complex-mass scheme and work to two loops.

Consider first the width of the ∆ at two-loop order [16]. The pertinent effective Lagrangian
contains, besides many other terms, the leading π∆ and πN∆ couplings, parameterized in terms of

1As introduced by Feng-Kun Guo in 2017, see also Fig. 1 that was generated by him.
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Figure 2: One and two-loop self-energy diagrams contributing to the width of the delta resonance up-to-and-
including fifth order according to the standard power counting. The dashed and double solid lines represent
the pions and the delta resonances, respectively. The double (solid-dotted) lines in the loops correspond to
either nucleons or deltas. The numbers in the circles give the chiral orders of the vertices.

the LECs g1 and h, respectively,

L
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π∆
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i
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3
2

i j

{(
i /D jk−m∆δ
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)
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(
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)
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γ
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+ m∆δ
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γ
ν +g1

1
2
/u jk

γ5gµν +g2
1
2
(γµuν , jk +uν , jk

γ
µ)γ5 +g3

1
2

γ
µ/u jk

γ5γ
ν

}
ξ

3
2

kl Ψ
l
ν ,

L
(1)

πN∆
= hΨ̄

i
µξ

3
2

i j Θ
µα(z1) ω

j
αΨN +h.c. , (3.1)

in terms of the spin-1/2 (3/2) fields ΨN (Ψi
µ) and for other notations, see [16]. The power counting

rests on m∆−mN being a small quantity. However, there are so many LECs (not all are shown in
Eq. (3.1)), so how can one one possibly make a prediction? The trick is to use the complex-mass
renormalization scheme, a method that was originally introduced for precision W,Z-physics, see
e.g. [17, 18] and later transported to chiral EFT [19]. For the case under consideration, we need to
evaluate the ∆ self-energy on the complex pole,

z−m0
∆−Σ(z) = 0 with z = m∆− i

Γ∆

2
. (3.2)

The corresponding diagrams for the one- and two-loop self-energy contributing to the width of the
delta resonance up to order q5 are displayed in Fig. 2, where the counterterm diagrams are not
shown. The one-loop diagrams are easily obtained, for the calculation of the two-loop graphs one
uses the Cutkovsky rules for instable particles, that relate the width to the pion-nucleon scatter-
ing amplitude, Γ∆ ∼ |A(∆→ Nπ)|2 [20]. One finds a remarkable reduction of parameters that is
reflected in the relation

hA = h− (b3∆23 +b8 ∆123)− ( f1∆23 + f2 ∆123)∆123 +2(2 f4− f5)M2
π ,

∆23 = mN−m∆, ∆123 = (M2
π +m2

N−m2
∆)/(2mN) , (3.3)
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Figure 3: Correlation between the leading π∆ and πN∆ couplings. The band gives the uncertainty of the
calculation, and the box with the error bars are the results from the analysis of Ref. [21].

which means that all of the LECs appearing in the πN∆ interaction at second and third order, the
bi(i = 3,8) and fi(i = 1,2,4,5), respectively, merely lead to a renormalization of the LO πN∆

coupling h, and, consequently, one finds a very simple formula for the decay width ∆→ Nπ ,

Γ(∆→ Nπ) = (53.91h2
A +0.87g2

1h2
A−3.31g1h2

A−0.99h4
A) MeV . (3.4)

This leads to a novel correlation, that is independent of the number of colors, as depicted in Fig. 3.
It is obviously fulfilled by the analyis of Ref. [21], that showed that the inclusion of the ∆ alleviates
the tension between the threshold and subthreshold regions in the description of πN scattering
found in baryon CHPT.

Next, I consider the calculation of the width of the Roper N∗(1440) at two-loop order [22]. A
remarkable feature of the Roper is the fact that its decay width into a nucleon and a pion is similar
to the width into a nucleon and two pions. Any model that is supposed to describe the Roper must
account for this fact. In CHPT, consider the effective chiral Lagrangian of pions, nucleons and
deltas [23, 24, 25],

Leff = Lππ +LπN +Lπ∆ +LπR +LπN∆ +LπNR +Lπ∆R ,

L
(1)

πR = Ψ̄R

{
i /D−mR +

1
2

gR/uγ
5
}

ΨR , L
(2)

πR = Ψ̄R
{

cR
1 〈χ+〉

}
ΨR + . . . ,

L
(1)

πNR = Ψ̄R

{
1
2

gπNRγ
µ

γ5uµ

}
ΨN +h.c. , L

(1)
π∆R = hR Ψ̄

i
µξ

3
2

i j Θ
µα(z̃) ω

j
αΨR +h.c. , (3.5)

where the leading Roper-pion, Roper-nucleon pion and Delta-Roper-pion couplings, gR, gπNR and
hR, respectively, are high-lighted. In this case, the power counting is complicated, but can be set up
around the complex pole as [22]:

mR−mN ∼ ε , mR−m∆ ∼ ε
2 , m∆−mN ∼ ε

2 , Mπ ∼ ε
2 , (3.6)

where ε denotes a small parameter. Again, let us calculate the self-energy to two loops at the
complex pole zR = mR− iΓR/2. By applying the cutting rules to these self-energy diagrams, one

5
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obtains the graphs contributing to the decay amplitudes of the Roper resonance into the πN and
ππN systems, leading to the total width

ΓR = ΓR→Nπ +ΓR→Nππ . (3.7)

A somewhat lengthy calculation leads to:

Γ(R→ Nπ) = 550(58)g2
πNR MeV , (3.8)

Γ(R→ Nππ) =
(

1.49(0.58)g2
A g2

πNR−2.76(1.07)gA g2
πNR gR

+1.48(0.58)g2
πNR g2

R +2.96(0.94)gA gπNR hAhR

−3.79(1.37)gπNR gR hAhR +9.93(5.45)h2
Ah2

R

)
MeV . (3.9)

The total width thus depends on five LECs. The uncertainties in the round brackets are generated
by the uncertainties in the LECs. We use gA = 1.27 and hA = 1.42± 0.02. The latter value is the
real part of this coupling taken from Ref. [26]. As for the other unknown parameters, the authors
of [22] fixed gπNR so as to reproduce the width ΓR→πN = (123.5±19.0) MeV from the PDG. This
yields gπNR = ±(0.47± 0.04). In what follows, let us take the positive sign for our central value
and use the negative one as part of the error budget. Further, assume gR = gA and hR = hA, the so-
called maximal mixing assumption [27]. Then, one can make a prediction for the two-pion decay
width of the Roper,

Γ(R→ Nππ) = (41±22LECs±17h.o.) MeV , (3.10)

which is consistent with the PDG value of (67±10) MeV. The error due to the neglect of the higher
orders (h.o.) is simply given by multiplying the ε5 result (central value) with ε = (mR−mN)/mN '
0.43. Clearly, to make further progress, we need an improved determination of the LECs gR and
hR.

4. Lesson 3: New insights into heavy-light meson spectroscopy

In 2012, I had already considered scattering the Goldstone boson octet (π,K,η) off the D-
meson triplet (D0,D+,D+

s ). This involves the positive-parity scalar charm-strange mesons D∗s0(2317)
and Ds1(2460), which are very narrow and are often interpreted as molecular DK and D∗K states,
respectively. Over the years, a number of puzzles has emerged that need to be answered: (1) why
are the masses of the D?

s0(2317) and the Ds1(2460) much lower than the quark model predictions
for cs̄ mesons? (2) why is MDs1(2460)−MD?

s0(2317) ' MD? −MD within 2 MeV? and (3) why does
one find MD?

0(2400) & MD?
s0(2317) and MD1(2430) ' MDs1(2460)? Naively, one would expect that the

mesons, where a light (u,d) quark is substituted by an s quark, are heavier. Within the molecular
picture, the combination of unitarized CHPT, lattice results and precision data has led to a consis-
tent picture, which I will only briefly discuss here. For more details the reader should consult the
comprehensive review [28].

Concerning the first puzzle: It is resolved within the molecular scenario, as known since long.
This is further supported by recent lattice QCD calculations with cs̄ and DK interpolating fields
and relatively light pions [29, 30]. The DK scattering length from Ref. [29], a0 = −1.33(20) fm,
is consistent with the prediction of the molecular scenario, amol

0 = −2/
√

µDKε ' −1fm, with

6
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µDK the reduced mass and ε ' 45MeV the binding energy. Further, the quark mass dependence
of the D?

s0(2317) calculated in Ref. [30] is perfectly consistent with the one in the molecular
picture, cf. Ref. [31]. The wavefunction renormalization constant deduced from these results,
1−Z = 1.04(0.08)(0.30) is also supporting the molecular scenario in which Zmol = 0. The sec-
ond puzzle is also naturally explained in this picture as a natural consequence of Heavy Quark Spin
Symmetry (HQSS), one simply substitutes the D-meson by a D∗-meson, see e.g. [32]. Using Heavy
Quark Flavor Symmetry (HQFS), one can furthermore easily make predictions for the bottom ana-
logues, MB?

s0
' MB +MK − 45MeV' 5.730 GeV and MBs1 ' MB? +MK − 45MeV' 5.776 GeV,

which are consistent with lattice QCD, Mlat
B?

s0
= (5.711±0.013±0.019)GeV and Mlat

Bs1
= (5.750±

0.017±0.019)GeV [33]. Finally, let me resolve enigma (3). Recently, the Hadron Spectrum Col-
laboration investigated coupled channel Dπ , Dη and DsK̄ scattering with I = 1/2 and found one
pole corresponding to the D?

0(2400) [33]. These lattice energy levels were re-analyzed in Ref. [34]
using unitarized CHPT and the values of the LECs already determined long before in [35]. They
found two poles, completely analogous to the famous Λ(1405), where the lighter one has mass
of about 2.1 GeV, thus resolving puzzle (3). This pattern of two I = 1/2 states emerges naturally
in the underlying formalism since already the LO CHPT interactions are attractive in two flavor
multiplets, to which the two states belong: the anti-triplet and the sextet [36, 34]. This double-pole
structure had already been noticed in earlier calculations, see e.g. [36, 37] but only now finds a nat-
ural explanation. Using HQSS and HQFS, one can extend this double-pole scenario to the D1,B?

0
and B1, as summarized in Tab. 2.

Lower Pol [MeV] Higher Pol [MeV] PDG [MeV]
D?

0
(
2105+6

−8,102+10
−11

) (
2451+36

−26,134+7
−8

)
(2318±29,134±20)

D1
(
2247+5

−6,107+11
−10

) (
2555+47

−30,203+8
−9

)
(2427±40,192+65

−55)

B?
0
(
5535+9

−11,113+15
−17

) (
5852+16

−19,36±5
)

—
B1

(
5584+9

−11,119+14
−17

) (
5912+15

−18,42+5
−4

)
—

Table 2: Two-pole scenario in various I = 1/2 states in the heavy meson sector. Given are the mass M and
the half-width Γ/2 as (M,Γ/2).

Remarkable, there is further support for this picture from the recent high precision results
for B→ Dππ from LHCb [38]. They determined accurately the so-called angular moments from
the Dπ final-state interactions (FSI) that contain spectroscopic information. The corresponding
chiral Lagrangian for B̄→ D transition with the emission of two light pseudoscalars is known
since long [39]. Combining it with the FSI from unitarized CHPT, one gets a two parameter de-
scription of the corresponding amplitude in the energy region of the Dπ system below 2.5 GeV,
A (B−→ D+π−π−) = A0(s)+A1(s)+A2(s), in terms of S-, P- and D-waves. In Ref. [40] the
same P- and D-waves as in the LHCb analysis were taken and the S-wave was fixed form the cou-
pled Dπ,Dη ,DsK̄ system already determined before. The two parameters are one combination of
LECs of the aforementioned chiral Lagrangian and the subtraction constant in the two-meson loop
functions Gi j, {i j} ∈ {Dπ,Dη ,DsK̄}. The angular moments are well reproduced, see Fig. 4. This
picture can further be tested by confrontation with data, namely by measuring the angular moments,
in particular 〈P1〉−14〈P3〉/9, with unprecedented accuracy for the B→ D(∗)ππ and B→ D(∗)

s K̄π

reactions. This can be done at LHCb and Belle-II. One expects to see nontrivial cusp structures at

7
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Figure 4: Fit to the LHCb data for the angular moments 〈P0〉, 〈P1〉 − 14〈P3〉/9 and 〈P2〉 for the B− →
D+π−π− reaction [38]. The largest error among 〈P1〉 and 14〈P3〉/9 in each bin is taken as the error of
〈P1〉−14〈P3〉/9. The solid lines show the results of [40], with error bands corresponding to the one-sigma
uncertainties propagated from the input scattering amplitudes, while the dashed lines stand for the LHCb fit
using cubic splines for the S-wave.

the D(∗)η and D(∗)
s K̄ thresholds in the former, and near-threshold enhancement in the D(∗)

s K̄ spec-
trum in the latter [34]. Also, measuring the hadronic width of the D∗s0(2317), predicted to be about
100 keV in the molecular scenario [41, 35], while much smaller otherwise. This is a smoking-gun
type of experiment and will be performed by the PANDA experiment at FAIR. Finally, one can
check the existence of the sextet pole in lattice QCD with a relatively large SU(3) symmetric quark
mass. And finally, one should search for the predicted analogous bottom positive-parity mesons
both experimentally and in lattice QCD.

I therefore conclude that the long accepted paradigm underlying open-flavor heavy meson
spectroscopy that identifies all ground states with cq̄ or bq̄ quark model states, is no longer tenable.
In a broader view, the hadron spectrum must be viewed as more than a collection of quark model
states, but rather as a manifestation of a more complex dynamics that leads to an intricate pattern of
various types of states that can only be understood by a joint effort from experiment, lattice QCD
and phenomenology.

5. Lesson 4: A short remark on the pion-nucleon σ -term

The situation concerning the Roy-Steiner analysis to precisely determine the pion-nucleon σ -
term, σπN , and the apparent tension with lattice determinations has been nicely reviewed by Martin
Hoferichter [42], see also the impressive work by the BMWc Collaboration reported by Laurent
Lellouch [43]. One new piece of information concerns the flavor singlet term σ0, related to σπN

and the strangeness fraction y via σπN = σ0/(1− y). In Ref. [44] the flavor decomposition of σπN

was re-analyzed in the framework of baryon chiral perturbation to fourth order, employing both a
covariant (EOMS) and the heavy baryon framework and including also the low-lying decuplet (for
the different approaches, see e.g. the review [45]). Due to the tension between the lattice and Roy-
Steiner determinations, only continuum data were used, making the fits at fourth order difficult due
to the large number of LECs. Within some Bayesian approach, one arrives at the results collected in
Tab. 3. At third order, one finds a disturbingly large spread within the different approaches. Similar
results for the O(p3) fits have been obtained earlier in [46]. The O(p4) results for the covariant
calculation only differ slightly from the O(p3) results. The fit without decuplet-resonances shifts

8
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HB HB + decuplet EOMS EOMS + decuplet
O(p3) 57.9(0.2)(17.0) 88.6(0.2)(34.0) 46.4(0.2)(10.4) 57.6(0.2)(17.0)
O(p4) 64.1(31.7)(9.3) 64.0(31.7)(18.7) 51.8(31.4)(5.7) 61.8(31.4)(9.3)

Table 3: Results for σ0 in MeV at third and fourth order. Here, “+decuplet” means the inclusion of the
decuplet, HB denotes the heavy baryon and EOMS the covariant approach. The first error comes from the
uncertainties within the given order, the second error is an estimate of the neglected higher order effects
following Ref. [47].

more towards σπN ' 59 MeV, while the fit with the decuplet is slightly above 60 MeV. The O(p4)

HB fit results are both around 64 MeV. So the O(p4) result for the HB approach including decuplet
baryons is much closer to σπN than its corresponding O(p3) result. Given the central values for
σ0 from Tab. 3 and the precise value from the Roy-Steiner analysis for σπN [48], we see that the
strangeness content y' 0, but due to the large uncertainties, this can not be made more precise.

6. Short summary & outlook

Picking up on my 2012 talk, it is obvious that hadron-hadron scattering continues to be a prime
playground for chiral dynamics. Over the years, a nice interplay of (U)CHPT, dispersion relations,
lattice QCD and experiment has developed, as discussed before in a few examples. There is a
clear challenge to lattice QCD, namely the precise determinations of the scattering lengths a0 in
ππ → ππ , a1/2

0 ,a3/2
0 in πK → πK and a+,a− in πN → πN. This would be premier tests of the

chiral QCD dynamics. Also, the latter are particularly important for another test of the lattice QCD
determinations of σπN [49].

Furthermore, there has been recent focus on heavy-light systems, where the marriage of CHPT
with Heavy Quark Effective Theory and dispersive techniques starts to pay large dividends. Also,
(heavy) hadron decays play an ever increasing role, largely due the large number of scattering
processes with light mesons in the final states that are otherwise difficult to access experimentally.
On the continuum side, complex mass renormalization schemes and dispersion relations appear
most fruitful, while on the lattice side there is some focus on the development of finite-volume
formulas for three-body decays, see e.g. Ref. [50] (and references therein). Clearly, we need
ω → 3π and R→ Nππ from lattice QCD.

Finally, as nicely demonstrated by Evgeny Epelbaum in his talk [51], chiral symmetry plays
an indispensable role in nuclei. I look forward to many existing new results in the years to come.
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