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We review the derivation of dispersion relations for forward Compton scattering off the nucleon,
including the Lorentz decomposition of the Compton tensor Tµν. We then discuss the dispersion
relations for the resulting scalar functions T1 and T2 and present the consequences in terms of sum
rules for the nucleon polarizabilities. Finally, we revisit the Cottingham formula and summarize
the present status of its phenomenological evaluation. In particular, we stress that regardless of a
fixed pole in T1, the elastic contribution is unambiguous, providing a dispersive definition for the
notion of the Born terms.
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Figure 1: Kinematics for forward Compton scattering (left) and nucleon electromagnetic self energy (right).
Solid and wiggly lines denote nucleons and photons, respectively, the gray blobs the hadronic four-point
function.

1. Introduction

Forward Compton scattering off the nucleon, see Fig. 1, is related to the nucleon electromag-
netic self energy by closing the photon loop. This naive relation can be made precise in the context
of the Cottingham formula [1], which has been used in [2, 3] to extract the strong proton–neutron
mass difference and provide the first estimates for the ratios of the light-quark masses, prior to
Weinberg’s estimate [4] based on the Dashen theorem [5]. A key assumption in the analysis con-
cerns the asymptotic behavior of the Compton tensor, Reggeon dominance or the absence of fixed
poles, in which case an otherwise necessary subtraction function can be calculated unambiguously
from space-like scattering data [6, 7]. In recent years, doubts have been raised [8] concerning the
treatment of this subtraction function in the analysis of [2, 3], claiming that a hadronic model was
in fact unavoidable [8–10]. Here, we summarize the reasons why this criticism is unfounded [11],
concentrating on several key technical points in the analysis.

2. Forward virtual Compton scattering

2.1 Lorentz decomposition

We consider the amplitude for the process

N(p) +γ∗(q,µ)→ N(p) +γ∗(q, ν), (2.1)

the forward scattering of a photon with virtuality q off a nucleon with momentum p, see Fig. 1.
Averaging over spins, this defines the Compton tensor

T µν(p,q) =
i
2

∫
d4xeiq·x 1

2

∑
s

〈N(p, s)|T
{
jµ(x) jν(0)

}
|N(p, s)〉, (2.2)

where jµ(x) denotes the electromagnetic current. The kinematics are expressed in terms of the
virtuality q2 = −Q2 and ν = p · q/m, with nucleon mass m. First, we need a decomposition of
T µν into Lorentz structures, in such a way that the coefficient functions are free of kinematic sin-
gularities and zeros. The general recipe for the derivation of such a decomposition proceeds as
follows [12, 13]:

1. Write down all possible structures {T µν
i } = {g

µν,qµqν, pµpν, pµqν + pνqµ}.
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2. Apply projectors Iµµ
′

Iνν
′

Tiµ′ν′ with Iµν = gµν−
qµqν

q2 ,

{T̄ µν
i } = Iµµ

′

Iνν
′

{Tiµ′ν′} =

{
gµν−

qµqν

q2 ,0,
(q2 pµ−qµp ·q)(q2 pν−qνp ·q)

q4 ,0
}
. (2.3)

3. Take linear combinations to remove singularities in q2 as far as possible (here 1/q4),

¯̄T µν
1 = T̄ µν

1 = gµν−
qµqν

q2 ,

¯̄T µν
2 = T̄ µν

3 +
(p ·q)2

q2 T̄ µν
1 =

1
q2

{
gµν(p ·q)2 + pµpνq2− p ·q

(
pµqν + pνqµ

)}
. (2.4)

4. Multiply by q2 to remove the remaining singularities.

This recipe reproduces the Lorentz decomposition from [2]

T µν(p,q) = T1(ν,q2)Kµν
1 + T2(ν,q2)Kµν

2 ,

Kµν
1 = qµqν−gµνq2, Kµν

2 =
1

m2

{
(pµqν + pνqµ)p ·q−gµν(p ·q)2− pµpνq2

}
. (2.5)

A careful choice of the Lorentz decomposition is critical, e.g., the alternative decomposition

T µν(p,q) = T̃1(ν,q2)K̃µν
1 + T̃2(ν,q2)K̃µν

2 ,

K̃µν
1 =

1
2

(qµqν

q2 −g
µν

)
, K̃µν

2 =
1

2m2

(
pµ−

p ·q
q2 qµ

)(
pν−

p ·q
q2 qν

)
, (2.6)

often employed in the literature is related by

T̃1(ν,q2) = 2q2T1(ν,q2) + 2ν2T2(ν,q2), T̃2(ν,q2) = −2q2T2(ν,q2), (2.7)

where T̃1(ν,q2) and T̃2(ν,q2) now have kinematic zeros. This implies that subtractions already
become required just to get the kinematic zeros right, which is the reason why the calculation of
the elastic contribution to the Cottingham formula in [8] based on unsubtracted dispersion relations
for the T̃i produced an incorrect result. With only two scalar functions the identification of a
proper Lorentz basis is relatively straightforward, but for more complicated kinematics [13, 14]
or processes [15] the derivation of a set of scalar functions amenable to a dispersive treatment
becomes all but impossible without a systematic approach.

2.2 Dispersion relations

In general, the necessity of subtractions in the dispersion relations for the Ti depends on the
behavior of the imaginary parts. To formulate these conditions, we consider the structure functions
Vi(ν,q2), which fulfill ImTi(ν,q2) = πVi(ν,q2) for ν ≥ 0, q2 ≤ 0, and for q2 < 0 are fully determined
by eN cross sections. Regge theory predicts

V1(ν,q2) ∼ να, V2(ν,q2) ∼ να−2, (2.8)

with αP ∼ 1 for the Pomeron and αR ∼ 0.5 for the f and a2 trajectories. Since the analytic con-
tinuation is unique up to a polynomial ∆Vi(ν,q2) = ε(ν)

∑N
n=0σ

(i)
n (q2)ν2n [7], where σ(i)

n (q2) = 0 for

2
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= + · · ·

Figure 2: Unitarity relation for nucleon Compton scattering. The short-dashed line indicates that interme-
diate states are to be taken on-shell. The expansion starts with the nucleon pole, which defines the elastic
contribution, while the ellipsis denotes inelastic corrections.

q2 ≤ 0, one has ∆V2 = 0 according to Regge theory, but ∆V1 could be non-zero. Thus, unsubtracted
dispersion relations for both Ti(ν,q2) are possible if ∆V1 = 0, which is called the Reggeon domi-
nance hypothesis, or, equivalently, referred to as the absence of fixed poles. We may then write the
dispersion relations as

T1(ν,q2) = S 1(q2) + 2ν2
∫ ∞

0

dν′

ν′
V1(ν′,q2)
ν′2− ν2− iε

, T2(ν,q2) = 2
∫ ∞

0
dν′ ν′

V2(ν′,q2)
ν′2− ν2− iε

, (2.9)

valid in either case, while in the absence of fixed poles the subtraction function S 1(q2) can be
calculated from the sum rule

S 1(q2) = T1(0,q2) = T R
1 (0,q2) + 2

∫ ∞

0

dν
ν

[
V1(ν,q2)−VR

1 (ν,q2)
]
, (2.10)

where the Regge amplitude T R
1 (0,q2) has been separated due to its known singularity structure.

The dominant contribution to the unitarity relation is given by elastic states, see Fig. 2, whose
spectral functions are determined by the electromagnetic form factors of the nucleon, the Sachs
form factors GE(q2) and GM(q2),

Vel
i (ν,q2) = vel

i (q2)
[
δ(q2 + 2mν)−δ(q2−2mν)

]
, (2.11)

vel
1 (q2) =

2m2

4m2−q2

[
G2

E(q2)−G2
M(q2)

]
, vel

2 (q2) =
2m2

(−q2)(4m2−q2)
)
[
4m2G2

E(q2)−q2G2
M(q2)

]
,

providing a unique dispersive definition for the elastic contribution to Ti(ν,q2)

T el
1 (ν,q2) =

4m2q2

(4m2ν2−q4)(4m2−q2)

[
G2

E(q2)−G2
M(q2)

]
,

T el
2 (ν,q2) = −

4m2

(4m2ν2−q4)(4m2−q2)

[
4m2G2

E(q2)−q2G2
M(q2)

]
. (2.12)

The corresponding causal representation is constructed explicitly in App. D of [11].
In consequence, the relations (2.12) yield a possible rigorous definition of the Born contri-

bution, which remains ambiguous in a diagrammatic derivation [16–18], but can be reproduced
order-by-order in a effective field theory. For instance, this dispersive definition of the Born contri-
bution differs from [18] by a numerically small term ∆T1(ν,q2) = (F2(q2))2/(4m2) (with Pauli form
factor F2(q2)), reflecting the fact that the nucleon polarizabilities as usually defined involve a small

3
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Figure 3: Contributions to the transverse (red solid) and longitudinal (blue dashed) sum rules, generalized
to finite Q2. The values at Q2 = 0 are shown for comparison (all in units of 10−4fm3), see main text for
details. Figure taken from [11].

elastic component. Moreover, only the truly elastic piece (2.12) can be effectively resummed in
terms of nucleon form factors in the Cottingham formula, for the additional piece ∆T1(ν,q2) that
emerges diagrammatically such a dispersive justification does not exist. Here, a full treatment of
the subtraction function is unavoidable.

3. Sum rules for the nucleon polarizabilities

The electric and magnetic nucleon polarizabilities αE and βM are related to the inelastic con-
tribution to the subtraction functions S inel

i (q2) by the low-energy theorems

S inel
1 (0) = −

κ2

4m2 −
m
αem

βM, S inel
2 (0) =

m
αem

(αE +βM), (3.1)

with fine-structure constant αem = e2/(4π), and the elastic piece involving the magnetic moment κ
arises because conventionally the polarizabilities are defined including ∆T1(ν,q2) in the notion of
the Born terms. The dispersion relation for S inel

2 (0) simply reproduces the Baldin sum rule [19]

αE +βM =
1
π

∫ ∞

νth

dν
ν2 σtot(ν), (3.2)

with the total, transverse, cross section σtot(ν,0) and νth the threshold for pion production. For βM

separately or, equivalently, for αE , a new sum rule emerges [11]

αE = ΣL
1 (0) +

αemκ
2

4m3 , ΣL
1 (0) =

αem

m
T R

1 (0,0) +
1

2π2

∫ ∞

νth

dν
σL(ν,Q2)−σR

L(ν,Q2)

Q2

∣∣∣∣∣
Q2=0

, (3.3)
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which is valid precisely in the absence of fixed poles. For the numerical evaluation one needs a
parameterization of the Regge amplitudes T R

1 as well as the longitudinal cross sections σL(ν,Q2).
The numerical evaluation from [11] is illustrated in Fig. 3, using input from photoproduction

multipoles [20–24] for low energies, from [25, 26] for the resonance region, and from [27–35]
for estimates of the Regge contribution. We reproduce well the analysis of the Baldin sum rule
from [36, 37], shown by the red square. The figure includes both our result for ΣL

1 (0) as well as the
experimental result for αp−n

E [38, 39]. Including the elastic κ2 piece, we find that for the proton–
neutron difference

α
p−n
E

∣∣∣
Reggeon dominance = −1.7(4)×10−4fm3, α

p−n
E

∣∣∣
exp = −0.9(1.6)×10−4fm3, (3.4)

so the result of the dispersive analysis assuming Reggeon dominance agrees with experiment within
uncertainties. If there is a fixed-pole contribution, its coefficient has to be small. In principle, the
same analysis could be repeated for proton and neutron separately, but for this purpose a better
understanding of the Pomeron Regge trajectory would be required.

4. Cottingham formula

The Cottingham formula expresses the electromagnetic contribution to the mass mγ as a loop
integral

mγ =
ie2

2m(2π)4

∫
d4qDΛ(q2)

[
3q2T1 + (2ν2 + q2)T2

]
+ counter terms, (4.1)

where DΛ(q2) is the regularized photon propagator and the counter terms are needed for renor-
malization [40, 41]. For the elastic contribution, however, the regulator can be removed and one
finds

mel
γ =

αem

8πm3

∫ ∞

0
dQ2Q2

[
f1 vel

1 (−Q2) + f2 vel
2 (−Q2)

]
,

f1 = 3
[√

1 +
1
y
−1

]
, f2 = (1−2y)

√
1 +

1
y

+ 2y, (4.2)

which evaluates to

(mel
γ )p = 0.63MeV, (mel

γ )n = −0.13MeV, (mel
γ )p−n = 0.76MeV. (4.3)

With inelastic contributions estimated as ±0.30MeV [2], this result is consistent with lattice QCD,
e.g., (mγ)p−n = 1.00(16)MeV [42] and (mγ)p−n = 1.03(17)MeV [43], so at this level there is no
evidence for a fixed pole. The prediction from the Cottingham formula could be sharpened with
improved input for the nucleon structure functions given that [2] still relied on scaling assumptions,
but the required detailed analysis has not been carried out so far. On the one hand, the parameteri-
zation for the structure functions needs to properly implement the Regge limit, in such a way that
the subtraction of the Regge amplitude in (2.10) indeed reliably removes the Reggeon singular-
ity, but at the same time the q2-dependence of the Regge residues needs to be matched smoothly
to deep-inelastic scattering because otherwise the renormalization of (4.1) as regards the photon
propagator will not work. Indeed, the model evaluations [8, 10] display a strong sensitivity to the
regulator varied within the narrow window 1.5GeV2 < Λ2 < 2.5GeV2.
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5. Conclusions

In summary, we reviewed the derivation of dispersion relations for forward virtual Compton
scattering, including the Bardeen–Tung–Tarrach Lorentz decomposition to avoid kinematic singu-
larities and zeros in the scalar amplitudes. With such a decomposition, in principle, the subtraction
function in T1 can be calculated if fixed poles are absent, but in either case the dispersive approach
gives a unique definition of the elastic contributions. As a first test of the Reggeon dominance
hypothesis we presented the result of a numerical analysis of a sum rule for the electric nucleon
polarizability αE that holds under the same assumption, with the result that if there is a fixed pole
in the proton–neutron difference at Q2 = 0, its coefficient has to be small. Finally, we stressed
that within the considerable uncertainties from the inelastic contributions, the evaluation of the
Cottingham formula based on elastic intermediate states only is consistent with lattice QCD. A
more refined analysis of the inelastic contributions would require a detailed study of the role of
the nucleon structure functions, in particular the interplay between deep inelastic scattering and the
Regge limit, to obtain a parameterization that both ensures that the sum rule for the subtraction
function for T1 converges and that the Cottingham formula is fully renormalized.
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