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The internal spin structure of the nucleon is described by structure functions in deep inelastic
lepton-hadron scattering which are related to real, virtual and double virtual Compton scattering
amplitudes by various sum rules connecting information at all energy scales. In this proceed-
ing I concentrate on theoretical description of spin polarizabilities of double virtual Compton
scattering. We use chiral perturbation theory to describe low energy QCD dynamics in a model
independent way. I briefly review chiral perturbation theory activities in this field and show that
the Jefferson Lab experimental data at low virtuality are in fair agreement with ChPT calculations
with explicit delta-resonance degrees of freedom. Though, preliminary experimental data indi-
cate a disagreement with existing ChPT predictions. There are also discrepancies between two
different calculations of generalized polarizabilities which use different power counting for delta
degrees of freedom which will be discussed.
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1. Introduction

Chiral perturbation theory (ChPT) is an established tool for analysis of low energy phenomena
where the energy region is well below the chiral symmetry breaking scale Λχ ∼ 1 GeV. Based on
the approximate chiral symmetry of QCD, ChPT gives a systematic low energy expansion of QCD
Green functions in mesonic sector [1]. Low energy meson sector has been studied within ChPT up
to the order p6 in chiral expansion which requires two-loop calculations [2]. Chiral Lagrangian is
even worked out up to order p8 [3] providing a path for systematic studies up to three-loops. An
extension of ChPT to one nucleon sector is straightforward and is formulated as a general path-
integral in the presence of matter (nucleon) field [4]. In the last two decades low energy processes
in the single nucleon sector have been intensively studied within ChPT, see [5]. Most of these
studies correspond to full one-loop calculations in the delta-less and leading one-loop in a ChPT
with explicit delta-resonance degrees of freedom (dof).

In this proceeding I report on our ChPT calculation of double virtual forward Compton scat-
tering (V2CS) at low virtualities with explicit delta-resonance dof [6]. This study allows an indirect
connection to experimental data by using sum rules. The sum rules provide a bridge between spin-
observables of inclusive electroproduction and V2CS. To be specific I will start with the inclusive
electroproduction on one nucleon. Its differential cross section [7] is given by

d2σ

dΩdE ′
=

α2
QED

2mNq4
E ′

E
LµνW µν , (1.1)

where αQED is a fine-structure constant, mN denotes the nucleon mass, q is a virtual photon trans-
fer momentum, E and E ′ are initial and final electron energies, respectively. Lµν and Wµν denote
leptonic and hadronic tensors. Hadronic tensor can be decomposed in the symmetric and antisym-
metric parts

Wµν = W (S)
µν +W (A)

µν (1.2)

which are denoted by labels ”S” and ”A”, and are relevant to unpolarized and polarized deep in-
elastic scattering, respectively. The antisymmetric hadron-tensor is a spin-dependent quantity and
can be described by two structure functions g1 and g2

W (A)
µν =

2mN

P ·q εµναβ qα

[
Sβ g1(x,Q2 )+

(
Sβ − S ·q

P ·qPβ

)
g2(x,Q2 )

]
, (1.3)

where S is a spin-four-vector and

x =
Q2

2P ·q , Q2 = −q2. (1.4)

Available polarized beams allow nowadays to study the structure functions g1(x,Q2) and g2(x,Q2).
On the other hand various sum rules build a bridge between these observables and V2CS con-
necting information at all energy scales. It is one of the main goals of JLab activities to provide
experimental mapping of spin-dependent observables from low-momentum to multi-GeV transfer.
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The spin-dependent part of V2CS in a forward kinematics can be described by two scalar
functions S1 and S2 via

i
∫

d4xeiq·x〉PS|T Jµ(x)Jν(0)|PS〉

= − i
2

ε
µναβ qα

[
Sβ S1(ν ,Q2 )+

1
m2

N

(
P ·qSβ −S ·qPβ

)
S2(ν ,Q2 )

]
, (1.5)

where Jµ is the electromagnetic current,

ν =
P ·q
mN

(1.6)

denotes photon energy, and P and S denote the momentum and spin polarization of the nucleon,
respectively. After a subtraction of the elastic part, pole-part of the amplitude at ν = Q2/2mN ,

S̄(ν ,Q2 ) = S(ν ,Q2 )−Selastic(ν ,Q2 ), (1.7)

one can build generalized polarizabilities defined by

γ0(Q2 ) =
1

8π

(
S̄(2)1 (0,Q2 )− Q2

mN
S̄(3)2 (0,Q2 )

)
,

δLT (Q2 ) =
1

8π

(
S̄(2)1 (0,Q2 )+

1
mN

S̄(1)2 (0,Q2 )

)
, (1.8)

where the moments are defined by

S̄1(ν ,Q2 ) =
∞

∑
i=0

S̄(2i)
1 (0,Q2 )ν2i,

S̄2(ν ,Q2 ) =
∞

∑
i=0

S̄(2i+1)
2 (0,Q2 )ν2i+1. (1.9)

For low virtualities the moments S̄(k)j (0,Q2) can be calculated within ChPT. On the other hand the
generalized polarizabilities γ0(Q2 ) and δLT (Q2 ) can be obtained from sum rules such that ChPT
predictions for γ0 and δLT can be tested by experimental data or more precisely by integrals over
data in the sum rules.

2. ChPT with explicit delta-resonance

In the original ChPT in the SU(2)-sector only pions and nucleons appear as dynamical dof. All
resonances like delta- and higher-resonances are integrated out. Their contributions are explicitly
accounted for in the low energy constants (LECs). From the studies of pion-nucleon scattering it
is well known that LECs from second order pion-nucleon-Lagrangian are unnaturally large. The
reason for this can be understood from delta-resonance saturation. Due to strong pion-nucleon-
delta coupling hA ∼ 1.4 and smallness of nucleon-delta-mass difference the resonance saturation
contribution of the delta-resonance to LECs c3 and c4 which contribute to pion-nucleon scattering
is unnaturally large. On top of this the leading non-minimal photon-nucleon-delta coupling which
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can be extracted from electromagnetic width of the delta-resonance appears also to be unnaturally
large. In order to get a better convergence in ChPT calculation LECs should be of natural size. To
enforce this it is advantageous to introduce delta-resonance as an explicit dof in a V2CS calculation.
In our analysis [6] we used ChPT with explicit delta dof. ChPT with explicit deltas was introduced
by Jenkins and Manohar [8], see also [9, 10] for early applications on decays of the baryon decuplet
and electromagnetic polarizabilities of the nucleon. Later a matured version of ChPT with explicit
deltas was introduced by Hemmert et al. [11]. In that work the authors proposed to treat momenta
Q, pion mass Mπ and delta-nucleon mass difference ∆ = m∆−mN phenomenologically as one
universal small scale

Q∼Mπ ∼ ∆� Λχ , (2.1)

denoted by ε . This scheme is known as the small scale expansion (SSE), also as the ε-power
counting scheme. SSE is advantageous since it is consistent with the large Nc-expansion where in
the Nc → ∞ limit nucleons and delta dof are degenerate and should be treated in the same way.
However, see [12] for a different so called δ -power counting. However, in particular due to its
simplicity, it is widely used in single nucleon calculations [13].

3. V2CS up to ε3 at photon point Q2 = 0

In our work [6] we used ChPT with explicit delta-resonance and performed SSE calculation up
to ε3. The work [6] was a natural extension of delta-less ChPT analyses [14, 15]. It is important to
note that up to ε3-order no unknown LECs appear. Chiral symmetry and gauge invariance restrict
the form of V2CS-amplitude allowing for the first spin-dependent two-photon-nucleon LEC to
appear at order ε5. This makes our calculation basically a prediction. Chiral Lagrangian and
diagrams which contribute to V2CS up to ε3 are explicitly given in [6]. For further discussion we
give numerical values of LECs which contribute to V2CS:

gA = 1.27, Fπ = 92.21 MeV, Mπ = 138.04 MeV, mN = 938.9 MeV,

κv = 3.706, κs = −0.120, m∆ = 1232 MeV, (3.1)

denoting the axial nucleon coupling, pion decay constant, pion mass, nucleon mass, anomalous
magnetic moments and delta-resonance mass, respectively. For delta-resonance couplings we use

hA = 1.43±0.02, b1 = −(4.98±0.27)/mN , (3.2)

where hA denotes pion-nucleon-delta and b1 photon-nucleon-delta couplings at order ε2, respec-
tively. The values of the constants hA and b1 in Eq. (3.2) have been determined from the strong and
electromagnetic width of the delta-resonance. The values of these couplings are consistent with
large-Nc predictions given by

hA =
3gA

2
√

2
= 1.35, b1 = − 3

2
√

2mN
(1+κp−κn) = −5.0

1
mN

. (3.3)

We start with the discussion of generalized polarizabilities γ0 and δLT at the photon point. It
is important to note that the first contribution to these observables start at order ε3 such that we
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are talking about leading order predictions. The results at the photon point for central values of the
input parameters are given by

γ
p
0 = 2.07q3 − 3.65ε3,tree − 0.16ε3,loop = −1.74 [±0.40] ,

γ
n
0 = 3.06q3 − 3.65ε3,tree − 0.18ε3,loop = −0.77 [±0.40] ,

δ
p
LT = 1.54q3 − 0.36ε3,tree + 1.22ε3,loop = 2.40 [±0.01] ,

δ
n
LT = 2.41q3 − 0.36ε3,tree + 0.33ε3,loop = 2.38 [±0.03] . (3.4)

All values are given in units of 10−4 fm4. The first number in Eq. (3.4) labeled as ”q3” denotes
the order-q3 pion-nucleon contributions. The second term labeled by ”ε3, tree” denotes the order-
ε3 tree-level contributions with one delta-resonance propagator. The third contribution labeled by
”ε3, loop” denotes the order-ε3 one-loop contributions with at least one delta-resonance propagat-
ing in the loop integral. In brackets, we give the results due to the variation of hA and b1 within
the bounds given above. They should not be understood as an error estimate stemming from higher
order truncations. From Eq. (3.4) we see that large positive contributions to generalized polarizabil-
ities come from pion-nucleon loop diagrams. Delta-resonance contributions behave differently for
γ0 and δLT . In the case of γ0 one gets large but negative contributions from ε3 tree-level diagrams
and small contributions from ε3 loop diagrams with delta dofs. There appear strong cancelations
between pion-nucleon loop and ε3 delta-resonance tree-level contributions such that γ0 becomes
a fine-tuned quantity. For this reason one can not expect a precise description of γ0 at the order
ε3 in the SSE. In the case of δLT we see an opposite qualitative behavior: ε3 tree level diagrams
with delta-resonance give small contribution while ε3 one-loop diagrams with delta dofs seem to
be sizeable, at least for proton case. There is no cancelation between pion-nucleon loops and delta-
resonance contributions which makes δLT a preferable quantity for a test of ChPT. Though, a size
of ε3-order one-loop contributions with delta dofs to δLT is surprising since it seems to contradict
a general consideration based on multipole decomposition of pion-electroproduction from which
one expects that delta-resonance contributions to δLT should be suppressed [16]. To clarify this
issue let us briefly discuss the arguments of [16]. According to Drechsel et al. [16] δLT and γ0 can
be constructed via dispersion integral from pion electroproduction amplitudes, see Fig 1. Accord-
ing to Eqs (25) and (26) of [16] γ0 and δLT can be expressed in terms of pion-electroproduction
multipole amplitudes

γ0 =
2
π

∫ dν

ν3
kcm

π

ν

√
1+

2ν

mN

(∣∣E0+
∣∣2−

∣∣M1+
∣∣2 +6E∗1+M1++3

∣∣E1+
∣∣2 + . . .

)
,

δLT =
2
π

∫ dν

ν3
kcm

π

ν

(
1+

2ν

mN

)(
L∗0+E0++2L∗1+

(
M1++3E1+

)
+ . . .

)
, (3.5)

with

kcm
π =

1
2W

√
(W 2−M2

π)
2−2m2

N(W 2 +M2
π)+m4

N , W =
√

m2
N +2mNν−Q2. (3.6)

Due to the ν−3 term in the integrands high-ν modes are strongly suppressed such that multipole
expansion of pion-electroproduction can be expected to converge rapidly. As a consequence a term
proportional to

∣∣E0+
∣∣2 in the case of γ0 is enhanced and nearly cancels contributions from magnetic
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Figure 1: Forward spin polarizabilities via dispersion integral of pion electroproduction amplitudes. Elastic
part and pion-nucleon cut contribution are sketched. Two and more-pion-nucleon cuts are dropped and
denoted by dots.

Figure 2: Box diagram which gives a sizeable contribution to δLT polarizability.

Figure 3: Box diagram of Fig. 2 represented as dispersion integral with two-pion-nucleon cut.

delta-resonance excitation proportional to
∣∣M1+

∣∣2. Due to this cancelation the interference term
proportional to E∗1+M1+ becomes important. In the case of δLT there is no such cancelation such
that δLT is dominated by s-wave terms proportional to L∗0+E0+. The contributions from magnetic
delta-resonance excitation proportional to L∗1+M1+ is therefore expected to be suppressed. This
expectation seems to be in contradiction with Eq. (3.4) where we see large contribution from delta -
resonance dofs: Delta tree-level contributions to δLT are indeed small. However loop-contributions
with delta-resonances are sizeable. In order to clarify where this effect comes from we analyzed
loop-diagrams with delta-resonance involved and have seen in the gauge ε0 = 0, where εµ denotes
virtual photon polarization four-vector, that the main contribution to δLT comes from the box-
diagram from Fig. 2. At the photon point the sum of this and crossed-box diagram gives

δ
p
LT (box) = 1.32×10−4 fm4. (3.7)

To show that there is no contradictions with arguments in [16] we note that delta-resonance is not
an asymptotic state. Only nucleons and pions are asymptotic states in ChPT. Within dispersion-
integral the box diagram of Fig. 2 corresponds to two-pion-exchange contributions with two-
pion-nucleon cut, see Fig. 3. Two-pion-electroproduction amplitude was not taken into account
in [16] but assumed to give a small contribution due to large phase space suppression. In the
explicit calculation we see, however, a sizeable contribution from the box diagram. To exclude
the possibility that the large effects are due to an inappropriate renormalization scheme we plot in
Fig. 4 the box-diagram contribution to δ

p
LT in dependence on delta-resonance mass. From Fig. 4 we

see that delta-resonance indeed decouples for larger values of the delta-resonance mass showing
the proper ultraviolet behavior of the box diagram. Enhanced contribution of the box diagram in

5
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Figure 4: The contribution of the box diagram to δ
p
LT in dependence of delta-resonance mass m∆ at photon

point Q2 = 0.

the proton case can be understood from its isospin prefactor given by

δLT (box) =
(
9+5τ3

)
fLT , (3.8)

where τ3 is a Pauli matrix and fLT does not depend on isospin dofs. Eq. (3.8) indicates roughly a
factor three enhancement for proton compared to neutron contributions:

δ
p
LT (box) = 14 fLT , δ

n
LT (box) = 4 fLT . (3.9)

4. V2CS up to ε3 at finite virtuality

After an extensive discussion of generalized polarizabilities γ0 and δLT at the photon point
Q2 = 0 we come to the results at finite virtuality. In Fig. 5 we show generalized polarizabilities γ0

and δLT in dependence on the virtuality Q2. Red bands are our predictions from [6]. The bands do
not include systematic uncertainties but indicate only the sensitivity to the variation of hA and b1 as
given in Eq. (3.2). Blue bands are ChPT predictions in the δ -counting [18] which use a somewhat
different value for b1 given by

b1 = 3gM/(mN +m∆) = 3.85/mN (4.1)

corresponding to gM = 2.97 from [17]. In order to compare our results with those of [17] we
give in Fig. 5 our predictions for b1 = 3.85/mN (red curve). As can be seen from Fig. 5 both
calculations give qualitatively similar results on γ0 and δ n

LT . However, for δ
p
LT the results differ, in

particular due to the absence of the box-diagram in δ -counting. The box diagram contributes in
the δ -counting at higher than p4/∆-order. It is important to note that all diagrams which appear
in the δ -counting at order p4/∆ appear also in SSE at order ε3. In SSE at order ε3 there are,
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Figure 5: Generalized polarizabilities γ0 and δLT in dependence on virtuality Q2. Red lower bands are
SSE predictions at order ε3 which indicate the sensitivity to LECs hA and b1 which was varied as given
in Eq. (3.2). For comparison reason we also give SSE predictions at order ε3 for b1 = 3gM/(mN +m∆) =

3.85/mN (upper red curve) which corresponds to the value gM = 2.97 given in [17]. Blue bands are ChPT
prediction in δ -counting from [18]. Neutron data: Ref. [19] and proton data from Ref. [20] (Q2 = 0) and
Ref. [21] (Q2 > 0). Only statistical errors are shown.

however, other diagrams with two and three delta-resonance propagators which are counted in δ -
counting as higher order effects. The actual smallness of these effects can be tested by comparing
SSE and δ -counting calculations. A strong disagreement on δ

p
LT indicates that higher order effects

are sizeable. For this reason it is important to go in both calculations at least one order higher.
Fig. 5 shows a fair agreement with experimental data in both calculations for the lower value of
b1, namely b1 = 3.85/mN . However, preliminary experimental data [22] at lower virtuality seem
to disagree with both calculations. This gives also a motivation to go one order higher both in SSE
and δ -counting scheme calculations.

5. Summary and conclusions

I discussed ChPT calculation of generalized polarizabilities γ0 and δLT of double-virtual for-
ward Compton scattering up to ε3 in the small scale expansion [6]. First contributions to polariz-
abilities start at ε3 so this is a leading order calculation. Gauge symmetry restricts the form of the
chiral Lagrangian such that there is no spin-dependent low energy constant at order ε3. For this
reason there are no fitting parameters and we are talking here about a prediction. I demonstrated
that our predictions for γ0 and δLT are in fair agreement with experimental data. However, prelimi-
nary experimental data at lower virtuality [22] indicate a disagreement between our prediction and
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experimental data. Similar ChPT calculations of generalized polarizabilities have been performed
within a δ -counting scheme [18]. The diagrams which contribute in the δ -counting scheme at the
order p4/∆ are also part of diagrams which contribute at order ε3 in the small scale expansion.
However, ε3-order calculation includes more diagrams than those which appear at p4/∆ order in
the δ -counting scheme. In particular, a box-diagram of Fig. 2 with three delta-resonance propa-
gators contributes to ε3-order calculation but is counted as higher order than p4/∆ in δ -counting
scheme and has not been taken into account in [18]. In the ε0 = 0 gauge this diagram gives a
sizeable contribution to δ

p
LT and leads to strong disagreement between the ε- and δ -counting cal-

culations. Also one should point out that the input Lagrangians in [18] and in [6] are different. The
difference are in the off-shell spin-1/2 ambiguities of the delta-resonance. Up to the order we are
working these differences are, however, negligible. Due to strong disagreement between two ChPT
calculations one should go at least one order higher in ε and δ -counting scheme calculations.
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