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Polarisabilities of the nucleon in BχPT and beyond Vadim Lensky

1. Introduction

The electromagnetic structure of the nucleon in the form of charge/magnetisation distribution
and inelastic structure functions has received a new round of revision recently in connection with
the “proton radius puzzle”. While the puzzle concerns the proton charge radius (or, more generally,
the electric form factor at low Q), the inelastic structure, parametrised by polarisabilities, enters
prominently in the calculation of subleading corrections, such as the two-photon exchange. These
calculations require a comprehensive understanding of the nucleon Compton scattering (CS) with
both photons virtual. The experimentally accessible CS regimes are, however, at present limited to

• real CS (RCS), with both photons real: q2 = q′2 = 0,

• virtual CS (VCS), with the initial photon having a non-zero virtuality q2 =−Q2 < 0 and the
final one being real, q′2 = 0,

• forward doubly virtual CS (VVCS), where both photons are virtual and have the same mo-
mentum, q = q′, q2 =−Q2 < 0,

where the information on the latter process is available from the moments of the nucleon structure
functions; see the reviews [1, 2, 3, 4, 5, 6] for detailed information on nucleon CS in these regimes.

Another source of information on the nucleon CS follows from the unitarity and analyticity
of the CS amplitude, which allows one to derive model-independent sum rules for various electro-
magnetic structure quantities [7]. These sum rules relate a low-energy quantity with a weighted
integral of a photoabsorption cross section on the nucleon, some of the well-known examples be-
ing the Baldin sum rule for the sum of the dipole (static) polarisabilities [8], the Gerasimov-Drell-
Hearn (GDH) sum rule for the anomalous magnetic moment [9, 10], both derived for RCS, and
the Burkhardt-Cottingham sum rule [11], derived for VVCS. The analyticity of the most general
(non-Born) CS amplitude provides constraints between the polarisabilities parametrising the three
different regimes — RCS, VCS, and VVCS — due to these regimes being special cases of the most
general CS kinematics.

A natural way to analyse the wealth of experimental data on all CS regimes is to use the chiral
perturbation theory (χPT) [12, 13, 14]. As a low-energy effective-field theory of QCD, it provides
the model-independent link between the nucleon Compton-scattering data and polarisabilities. It
should also naturally yield CS amplitudes that satisfy the analyticity constraints. Using χPT, one
can perform calculations in the different regimes of nucleon CS in the same unified framework and
test the theory against the data. This verification allows one to reliably calculate the two-photon
exchange corrections starting from the χPT result for the nucleon CS amplitude. Here we review
the recent results of this approach.

2. Nucleon Compton scattering in covariant baryon χPT

We consider nucleon CS in baryon χPT (BχPT), a manifestly-covariant formulation of χPT
with pion, nucleon and ∆(1232) isobar degrees of freedom, see ref. [15] for review. The details of
the calculation can be found in [16, 17, 18, 19] for RCS, [20] for VCS, and [21] for VVCS.
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Polarisabilities of the nucleon in BχPT and beyond Vadim Lensky

Our effective field theory expansion uses the δ -counting [22]: the mass difference between
the nucleon and the ∆ isobar, ∆ = M∆−M, is considered an intermediate scale, so that mπ/∆ '
∆/Λχ ≡ δ , and hence the usual chiral expansion scale mπ/Λχ is counted as δ 2. This expansion
scheme, in particular, naturally generates the Delta resonance width necessary for the description
of the resonance peak.

Figure 1: Born graphs and the anomaly graph.

Figure 2: Left: πN loops that contribute to nucleon polarisabilities at NLO; Right: π∆ loops and the ∆ pole
graph that contribute to nucleon polarisabilities at NNLO. Crossed and time-reversed graphs are not shown
but are included in the calculation.

The graphs that enter our BχPT calculation are shown in figs. 1 and 2. At leading order
(LO), there are the Born graphs and the pion anomaly graph; the former do not contribute to the
polarisabilities, while the latter gives a large and well-known contribution to the spin polarisabilities
and is customarily separated and treated together with the Born graphs. The leading contribution
to the polarisabilities (with the pion anomaly contribution subtracted) comes from the πN loops in
fig. 2 at next-to-leading order (NLO), whereas the π∆ loops and the ∆ pole graph in the same figure
contribute at next-to-next-to-leading order (NNLO). The NNLO BχPT calculation does not involve
any unknown parameters (they start to appear at one order higher). Note that in the VCS and the
VVCS cases the photon-nucleon vertex and the photon-nucleon-∆ vertex acquire form factors that
depend on the photon virtuality; see the details in the respective references cited above.

3. Nucleon RCS and polarisabilities in BχPT

The definition of the RCS static polarisabilities is connected to the expansion of the RCS
amplitude in powers of the photon energy ω , which is parametrised, up to terms of O(ω4), by
the following polarisabilities [23, 24]: αE1 and βM1 — the static electric and magnetic dipole
polarisabilities at O(ω2); four static spin polarisabilities γE1E1, γM1M1, γE1M2, and γM1E2 at O(ω3),
and the electric and magnetic dispersive and quadrupole polarisabilities, αE1ν , βM1ν , αE2, and βM2,
enter at O(ω4). Figure 3 and tables 1 and 2 show how these quantities, along with the experimental
data on the unpolarised cross section, are reproduced in BχPT. While the πN loops are necessary
in order to describe the pion production threshold behaviour, the ∆ pole and the π∆ loops bring the
polarisabilities close to their physical values, resulting in a good description of the available low-
energy experimental data at NNLO, as illustrated in fig. 3. This is further explained in table 1; one
can see that the ∆ pole contribution, in particular, to βM1, is quite large and is nicely accommodated
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to provide the final value. BχPT is in a reasonably good agreement with the PDG values of αE1

and βM1, with the latter being somewhat larger in BχPT. This seems to be a feature of all χPT
extractions as contrasted to the dispersion relations (DR) results that tend to obtain a smaller value
of the magnetic dipole polarisability, see [19] for further comparison. It has been suggested recently
in a partial wave analysis of proton RCS data below the pion production threshold [25] that this
difference might be a problem of the experimental database, see also refs. [26, 27]. This could be
further tested when the new RCS data become available [28, 29, 30]. BχPT also agrees quite well
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Figure 3: The result of the BχPT calculation for the proton RCS cross section compared with experimental
data. Data points are from: Illinois [31] — open squares, SAL [32] — open diamonds, and MAMI [33] —
filled circles. The curves are: black dotted — Born graphs only, green dashed — Born+anomaly, blue solid
— Born+anomaly+πN loops, red solid with a band — full NNLO BχPT.

Source αE1 βM1 αE2 βM2 αE1ν βM1ν

πN loops 6.9 −1.8 13.5 −8.4 0.7 1.8
π∆ loops 4.4 −1.4 3.2 −2.7 −0.6 0.6

∆ pole −0.1 7.1 0.6 −4.5 −1.5 4.7
Total 11.2±0.7 3.9±0.7 17.3±3.9 −15.5±3.5 −1.3±1.0 7.1±2.5

PDG [34] 11.2±0.4 2.5±0.4 · · · · · · · · · · · ·

Table 1: Values of proton static scalar polarisabilities, in units of 10−4 fm3 (dipole) and 10−4 fm5

(quadrupole and dispersive).

Source γE1E1 γM1M1 γE1M2 γM1E2

πN loops −3.4 −0.1 0.5 0.9
π∆ loops 0.4 −0.2 0.1 −0.2

∆ pole −0.4 3.3 −0.4 0.4
Total −3.3±0.8 2.9±1.5 0.2±0.2 1.1±0.3

MAMI 2015 [35] −3.5±1.2 3.16±0.85 −0.7±1.2 1.99±0.29

Table 2: Values of proton static spin polarisabilities, in units of 10−4 fm4.

with the empirically extracted spin polarisabilities [35]. The χPT description of the low-energy
RCS data does not seem to be very sensitive to the values of the lowest spin polarisabilities.
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4. Nucleon VCS and generalised polarisabilities in BχPT

︸ ︷︷ ︸
Born VCS

︸ ︷︷ ︸
non-Born VCS

+ += + +

︸ ︷︷ ︸
Bethe-Heitler

Figure 4: The mechanisms that contribute to the process ep→ epγ . The contribution of the last graph is
parametrised by the generalised polarisabilities (GPs).

Nucleon VCS is experimentally accessible in the process ep→ epγ , and in the conventional
setup the energy ω ′ of the final photon is considered small so that one can expand the amplitude
and the observables in powers of ω ′. The (spacelike) virtuality of the initial photon q2 =−Q2 can
be arbitrary but not too large so as the BχPT treatment can still be applied to VCS. The two leading
terms ∝ ω ′−1 and ∝ ω ′0 in the expansion in powers of ω ′ are given by the Bethe-Heitler (BH) and
Born terms, see fig. 4, with the generalised polarisabilities (GPs) starting to contribute at O(ω ′).
The GPs are functions of Q2 that are simply linear combinations of the VCS amplitudes taken at
the special kinematics ω ′ = 0, t =−Q2 [which also means ω = Q2/(2M)], see [36, 37, 38, 39, 40]
for the definitions. At the order O(ω ′), there are six GPs, conventionally denoted as

P(L1,L1)0(Q2), P(M1,M1)0(Q2), P(L1,L1)1(Q2), P(M1,M1)1(Q2), P(M1,L2)1(Q2), P(L1,M2)1(Q2) , (4.1)

where L1 or M2 etc. in the superscript denotes whether the photon is of the longitudinal/electric
or the magnetic type, with the corresponding angular momentum (for the final or initial photon, in
that order), whereas the last number in the superscript indicates whether the transition involves the
proton’s spin flip (1) or not (0).

The natural generalisations of the static polarisabilities to the VCS case are

αE1(Q2) =− e2

4π

√
3
2 P(L1,L1)0(Q2) , βM1(Q2) =− e2

4π

√
3
8 P(M1,M1)0(Q2) ,

γM1E2(Q2) =− e2

4π

3
2

√
3
2 P(L1,L1)0(Q2) , γE1M2(Q2) =− e2

4π

3√
2
P(M1,M1)0(Q2), (4.2)

where e is the proton charge. These functions coincide with the corresponding static RCS polar-
isabilities at Q2 = 0 [36, 38]. These definitions are specific for VCS, and should be distinguished
from the corresponding definitions for VVCS (which are made at a different kinematics). The re-
maining two GPs, P(L1,L1)1 and P(M1,M1)1, vanish at Q2 = 0. Their slopes are related to other static
polarisabilities and to the VVCS GPs via the spin-dependent sum rules.

The unpolarised differential cross-section of the process ep→ epγ , up to terms linear in ω ′,
depends only on the three VCS response functions, see, e.g., ref. [1, 36]:

PLL(Q2) =−2
√

6MGE(Q2)P(L1,L1)0(Q2) ,

PT T (Q2) = 6MGM(Q2)(1+ τ)
[
2
√

2Mτ P(L1,M2)1(Q2)+P(M1,M1)1(Q2)
]
,

PLT (Q2) =
√

3
2 M
√

1+ τ

[
GE(Q2)P(M1,M1)0(Q2)−

√
6GM(Q2)P(L1,L1)1(Q2)

]
, (4.3)
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Figure 5: VCS response functions PLL(Q2)−PT T (Q2)/ε (left) and PT T (right). The curves correspond to
ε = 0.65. The NNLO BχPT result — red solid curve with the cyan band. DR results [2] — blue band. The
data shown are: real-photon values, black open circle, PDG 2014 [34], and blue circle, MAMI [33]; green
diamond (solid/open), MIT-Bates [41, 42]; purple square (solid/open), MAMI [43]; red triangle (solid/solid
inverted/open), MAMI [44, 45, 46]; see ref. [40] for further explanation of the experimental points.

with GE(Q2) and GM(Q2) being the Sachs electric and magnetic form factors of the nucleon, and
τ = Q2/(4M2). Furthermore, if the electron polarisation transfer ε epsilon is kept constant, the
cross section depends only on two combinations, namely, PLL−PT T/ε and PLT .

Figure 5 shows the comparison of the BχPT results for PLL−PT T/ε and PLT with the results
of a DR calculation and the available empirical extractions. The general agreement both with data
and the DR calculation is quite good (within the somewhat large theoretical errors). The tensions
in PT T at low Q2 are due to the difference in the static dipole polarisability βM1. To further test the
χPT calculations in this sector, it would be very desirable to have more data at low Q2 . 0.2 GeV2.
One of the interesting features to study there would be the slope of βM1(Q2) at Q2 = 0; this quantity
enters the spin-independent constraints below. The theoretical prediction for the slope is sensitive
to the cancellation of the ∆ pole contribution with that of the πN loops, so even the sign of this
quantity is not well established.

5. Nucleon VVCS and generalised polarisabilities in BχPT

In the case of (forward) VVCS, the amplitude is expressed in terms of only four scalar func-
tions that depend on the photon virtuality Q2 and the photon laboratory frame energy ν [2]:

T = fL(ν ,Q2)+(~ε ′∗ ·~ε ) fT (ν ,Q2)+ i~σ · (~ε ′∗×~ε )gT T (ν ,Q2)− i~σ · [(~ε ′∗−~ε )× q̂]gLT (ν ,Q2) .

(5.1)

The low-energy expansion (LEX) of the non-Born part of the scalar amplitudes (denoted with the
bar over the corresponding letters) is

f̄T (ν ,Q2) = 4π
[
Q2

βM1 +(αE1 +βM1)ν
2]+ . . . , f̄L(ν ,Q2) = 4π(αE1 +αLν

2)Q2 + . . .

ḡT T (ν ,Q2) = 4πγ0ν
3 + . . . , ḡLT (ν ,Q2) = 4πδLT ν

2Q+ . . . , (5.2)

where the longitudinal polarisability αL and the longitudinal-transverse polarisability δLT are new
for the VVCS case, whereas the other polarisabilities are the same as in the RCS case, with
γ0 = −γM1M1− γM1E2− γE1E1− γE1M2. These static polarisabilities can be naturally generalised
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considering them as functions of Q2, such as 4πQ2βM1(Q2) = f̄T (0,Q2) and so on. Again, these
generalisations are specific to the regime of VVCS. The Q2-dependent coefficients in front of non-
zero powers of ν in the LEX of the scalar amplitudes are related through the unitarity with integrals
of electroabsorption cross sections, or the nucleon structure functions.
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Figure 6: Generalised polarisabilities γ0(Q2) and δLT (Q2) of proton and neutron. Red solid lines and blue
bands: NLO and NNLO BχPT result. Black dotted lines: MAID2007 [47]. Grey bands: BχPT calculation
of ref. [48]. Blue dashed line: NNLO HBχPT calculation [49]; off the scale for γ0(Q2). Red band: infrared-
regularised BχPT calculation [50]. The data points for the proton γ0 at finite Q2 are from Ref. [51] (blue
dots), and at Q2 = 0 from [52] (purple square). For the neutron all the data are from Ref. [53].

The spin VVCS GPs such as γ0(Q2) and δLT (Q2) have been extensively mapped within the
JLab low-Q2 experimental programme, reviewed in refs. [54, 55]. Of these two, δLT is assumed to
receive only a tiny contribution from the ∆, and therefore is an excellent check of chiral dynamics.
The first HBχPT calculations, however, could not describe the early data on the neutron δLT [55] —
the “δLT puzzle”. Figure 6 shows the current status of γ0 and δLT . One can see that the BχPT results
of ref. [18] provide a much better description of the available information on the proton γ0(Q2),
compared with the HBχPT and the infrared-regularised BχPT. At the same time, preliminary data
on the neutron/deuteron show a disagreement especially in the region of low Q2 [55, 56]; one of the
possible explanations suggested recently is the missing few-nucleon contributions in the analysis
of the deuteron data [57]. One also has to note that there is a different BχPT calculation [48] of the
VVCS GPs that uses a different counting and, as a result, has a different set of π∆ loops (and also
treats the ∆ pole contribution differently, most notably, does not include the form factors). The two
BχPT calculations disagree quite substantially, especially in the values of δLT . From the theory
side, this discrepancy will most likely be resolved in a higher-order calculation; at the same time,
the new experimental data from JLab [55] will test the theory.

The scalar VVCS amplitudes and GPs are interesting, first of all, due to their contribution in
the Lamb shift (LS) of muonic hydrogen (µH), see, e.g. [5] for a review. The dispersion relation for
fT (ν ,Q2) that relates it to the nucleon structure functions involves a subtraction function T̄1(Q2) =
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f̄ (0,Q2), which cannot be calculated from a sum rule. This function is readily obtainable from
the BχPT calculation of the nucleon CS, with the fact that the BχPT results are consistent with
the wealth of available data on the nucleon CS providing an additional verification of the result.
The BχPT result for the polarisability contribution to the µH LS is −8.2+1.2

−2.5 µeV at NLO (πN
loops [58]) which shifts to−7.3+1.5

−2.7 µeV when the ∆ pole contribution is added [60], which agrees
well with the results of other approaches.

6. Analyticity constraints relating RCS, VCS, and VVCS

As mentioned in the introduction, the analyticity of the most general (non-Born, i.e., with
the Born part subtracted) CS amplitude means that the LEX of this amplitude is universal: all
kinematics, in particular, RCS, VCS, and VVCS, are described by a single set of coefficients.
This leads to constraints that relate polarisabilities between the different regimes. Several new
constraints of that kind have been derived recently [59, 60, 40]. We start from two constraints that
connect spin-dependent quantities and appear at the order k2 in the expansion in powers of small
momenta k:

I′1(0) =
κ2

N

12
〈r2

2〉+
M2

2

{
4π

e2 γE1M2−3M
[
P′(M1,M1)1(0)+P′(L1,L1)1(0)

]}
, (6.1)

δLT =−γE1E1 +
3Me2

4π

[
P′(M1,M1)1(0)−P′(L1,L1)1(0)

]
, (6.2)

where I′1(0) is the slope of the the generalised GDH integral [2] at Q2 = 0, κN is the anomalous
magnetic moment of the nucleon, r2 is its Pauli radius, whereas P′(M1,M1)1(0) and P′(L1,L1)1(0) are
the slopes of the VCS GPs; note that δLT here also stands for the static value, δLT (0). These two
constraints are sum rules: they relate measurable quantities — moments of the nucleon structure
functions — with linear combinations of polarisabilities. Figure 7 shows a graphical representation
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Figure 7: Graphical representation of the spin-dependent sum rules of Eq. 6.1 (left) and 6.2 (right). The
brown bands in both panels are the empirical extraction of γE1M2 and γE1E1 [35]. The blue bands are the
DR evaluations [2] for the RCS and the slopes of VCS polarisabilities. The magenta bands are the BχPT
evaluations [21, 19, 20]. The gray band in the left panel is the sum rule constraint based on the empirical
information for I′1(0) and 〈r2

2〉. The gray band in the right panel is the sum rule constraint based on the DR
evaluation for the slopes of the VCS polarisabilities, whereas the black dashed line and the blue solid line
are respectively the values of δLT resulting from the analysis of MAID2007 [47] and the BχPT calculation
of ref. [48]. See ref. [40] for more detail.
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of these two constraints. In particular, the right panel of that figure again illustrates the δLT puzzle,
where the BχPT result of ref. [48] shows some tension with the other evaluations.

Three further new constraints arise at the order k4 in the expansion of the scalar CS amplitudes.
They take the form [60]

M(2)′
1 (0) = βM1,ν +

1
12

(4βM2 +αE2)+2
(
α
′
E1 +β

′
M1
)
− e2

2π
(2M)2b4,1

+
1
M

(−δLT + γM1M1− γE1E1− γM1E2 + γE1M2)+
1

(2M)2 (αE1 +βM1), (6.3)

M(1)′
2 (0) =

1
6
(αE2 +βM2)+2

(
α
′
E1 +β

′
M1
)
− e2

4π
(2M)2b19,0

− 1
M

(δLT + γE1E1 + γM1E2)+
1

(2M)2 (αE1 +βM1), (6.4)

1
2

T̄ ′′1 (0) =
1
6

βM2 +2β
′
M1 +

e2

4π
b3,0 +

1
(2M)2 βM1 , (6.5)

where M(2)′
1 (0) and M(1)′

2 (0) are the slopes of the second moment of the unpolarised structure
function F1(x,Q2) and of the first moment of the unpolarised structure function F2(x,Q2), T̄ ′′1 (0)
is the second derivative of the VVCS subtraction function, and α ′E1, β ′M1 are the slopes of the
generalised VCS polarisabilities at Q2 = 0. The first two of these constraints are sum rules; the
first of them involves a new constant b4,1 which is accessible in VCS through higher-order GPs,
while the second sum rule contains the constant b19,0 which, in principle, could be accessed in
an off-forward VVCS process (such as, e.g., lepton pair electroproduction). The third constraint
involves a derivative of the subtraction function, rather than a moment of a structure function, and
therefore cannot be represented as a sum rule. The coefficient b3,0 that enters it can also be accessed
in an off-forward VVCS process, and its knowledge (together with that of the other polarisabilities
in the right-hand side of the constraint) would allow one to empirically constrain the slope of the
subtraction function, see the discussion in ref. [60].

7. Summary

We reviewed the current status of the covariant BχPT results for the different regimes of nu-
cleon CS and the polarisabilities that are characteristic of these regimes. The calculations done in
the same framework allow one to test the theory by comparison with empirical data in all these
sectors. This, in turn, verifies the BχPT calculations of the inelastic structure contributions to
the two-photon exchange corrections, in particular, to the Lamb shift of muonic hydrogen. We
showed that the agreement between the BχPT results and empirically available data is rather good
generally, especially in RCS. There are still puzzles such as the difference between the extracted
values of βM1 in the different analyses, and the description of the VVCS spin GPs (the δLT puzzle)
where there is a significant variation between different theory calculations. While the disagreement
between the theory results will likely be resolved in future higher-order BχPT calculations, new
experimental data expected from different facilities (MAMI, JLab, HIGS) will further test the χPT
description. Additionally, we reviewed new model-independent constraints that relate the polar-
isabilities across the different regimes of nucleon CS; these constraints could provide additional
information on the low-energy structure of the nucleon.
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