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1. Introduction

Low-energy pion-nucleon (πN) scattering offers an important playground for us to understand
the chiral dynamics of quantum chromodynamics. Although the study of elastic πN scattering in
baryon chiral perturbation theory (BChPT) is now very successful and becomes more and more
mature, it suffered a winding development in the past thirty years. The reason is owing to the
occurence of power counting breaking (PCB) issue, which was first pointed out in Ref. [1], when
the MS-1 subtraction scheme was employed together with dimensional regularization (DR) to deal
with the loop diagrams. To restore the power counting rule, various approaches have been pro-
posed: heavy baryon (HB) formalism [2, 3], infrared regularization (IR) [4, 5] and extended-on-
mass-shell (EOMS) scheme [6, 7, 8].

Comparison of the above-mentioned approaches is shown in Fig. 1. It is demonstrated in
Ref. [5] that the loop integral can be separated into two parts: infrared-singular part with logMπ

and infrared-regular part which is a polynomial of Mπ and external momenta, where Mπ denotes the
mass of the pion fields. In Fig. 1, the infrared-singular and -regular parts are marked in red and blue,
respectively. The blue squares are PCB terms, belonging to the regular part. The power counting
rule is denoted by the green dashed line in the figure. In the HB approach, only the infrared-singular
pieces respecting the naive power counting rule are kept. This is achieved by making a further
expansion in terms 1/mB, with mB the baryon mass, in addition to the normal chiral expansion.
Within this framework πN scattering was analysed in detail up to order O(p3) [9, 10] and later up
to order O(p4) [11]. In the IR method, all the infrared-regular pieces are dropped and in practice
it corresponds to changing the integration domain of Feynman parameters, e.g.

∫ 1
0 dx→

∫
∞

0 dx [5].
By making use of the IR scheme, πN scattering has been studied up to O(p4) order [12] (see also
Ref. [13] for O(p3) order calculation). Besides, the analyses of the isospin violation and the SU(3)
sector of BChPT have also been considered in Refs. [14] and [15], respectively.

However, the analytic structure of the obtained chiral amplitude is distorted both in HB and IR
schemes, due to the discard of an infinity series of infrared-singular and/or -regular terms [13]. This
issue is overcome in EOMS scheme. In EOMS scheme, the PCB terms are absorbed by shifting
the low-energy constants (LECs) in the chiral effective Lagrangian, since they are polynomials and
have the same analytic structure as the tree amplitudes. πN scattering has been calculated using
EOMS scheme in Ref. [16] up to order O(p3) and in Ref. [17] up to order O(p4). Extension beyond
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Figure 1: Comparison of renormalization schemes of BChPT. The y-axis is chiral order N and x-axis is the
number of loops for a given Feynman diagram.
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the low-energy region is done in Ref. [18]. Contributions to the scattering amplitudes obtained in
those works possess the correct power counting and correct analytic properties. Nevertheless, in
Refs. [16, 17], the contribution of the explicit ∆ resonances is only partially incorporated. The
neglected ∆ contributions could be siganificant as indicated by positivity bounds on the LECs [19].
In my recent work [20] to be reviewed in next section, by using EOMS scheme, a complete calcula-
tion of elastic πN scattering has been carried out for the first time in manifestly relativistic BChPT
with explicit ∆ resonances up to leading one-loop order, i.e., next-to-next-to-leading order (NNLO)
or O(p3).

2. Elastic πN scattering in BChPT with explicit ∆ resonances up to NNLO

2.1 Basics for elastic πN scattering

The amplitude for the process of elastic πN scattering, denoted by πa(q)+N(p)→ πa′(q′)+
N(p′) for clarity, can be conventionally written as

T a′a
πN (s, t) = χ

†
N′

{
δa′aT+(s, t)+

1
2
[τa′ ,τa]T−(s, t)

}
χN ,

T±(s, t) = ū(s
′)(p′)

{
D±(s, t)− 1

4mN
[/q′,/q]B±(s, t)

}
u(s)(p) , (2.1)

where a′ and a are Cartesian isospin indices, τi are the Pauli matrices and χN , χN′ denote nu-
cleon iso-spinors. Furthermore, the superscript (s′), (s) denote the spins of the Dirac spinors ū, u,
respectively. s, t are Mandelstam variables defined by

s = (p+q)2 , t = (p− p′)2 . (2.2)

The D± and B± are unknown functions, which usually can be determined by using dispersion
relations under guidance of S-matrix arguments or by invoking baryon χPT, up to some unknown
parameters, i.e., subtraction constants for the former and LECs for the latter. In practice, functions
A± ≡D±−νB±, where ν ≡ (s−u)/(4mN) with mN the physical nucleon mass, are introduced for
convenience. Amplitudes with definite isospin can be obtained through

A I= 1
2 = A ++2A − , A I= 3

2 = A +−A − , (2.3)

where A ∈ {A,B,D} and I denotes isospin quantum number.
The relevant partial wave amplitudes f I

`±(s) are written as

f I
`±(s) =

1
16π
√

s

{
E+

p
[
AI
`(s)+

(√
s−mN

)
BI
`(s)
]
+E−p

[
−AI

`±1(s)+
(√

s+mN
)

BI
`±1(s)

]}
,(2.4)

with E±p =
s+m2

N−M2
π

2
√

s ±mN and the subscript `± is an abbreviation for the total angular momentun

J = `± 1
2 . One popular notation for all the partial waves is the spectroscopic one, L2I,2J , with

L = S,P,D,F, . . . (corresponding to ` = 0,1,2,3, . . .). The partial wave projection of the isospin
amplitudes is given by

A I
` (s) =

∫ +1

−1
A I(s, t(s,zs)) P̀ (zs)dzs , zs ≡ cosθ , (2.5)

where θ is the scatting angle in the center-of-mass (CMS) frame and P̀ (zs) are Legendre polyno-
mials.
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2.2 Chiral effective Lagrangians

For the calculation of the πN scattering amplitude in BChPT up to order O(p3) the following
chiral effective Lagrangians are needed

Leff =
2

∑
i=1

L
(2i)

ππ +
3

∑
j=1

L
( j)

πN +
2

∑
k=1

L
(k)

π∆
+

3

∑
l=1

L
(l)

πN∆
, (2.6)

where the relevant pieces at different chiral orders are given by [21, 22, 10, 23]

L
(2)

ππ =
F2

4
Tr(∂µU∂

µU†)+
F2M2

4
Tr(U† +U), (2.7)

L
(4)

ππ =
1
8

l4〈uµuµ〉〈χ+〉+
1
16

(l3 + l4)〈χ+〉2, (2.8)

L
(1)

πN = Ψ̄N

{
i /D−m+

1
2

g/uγ
5
}

ΨN , (2.9)

L
(2)

πN = Ψ̄N

{
c1〈χ+〉−

c2

4m2 〈u
µuν〉(DµDν +h.c.)+

c3

2
〈uµuµ〉−

c4

4
γ

µ
γ

ν [uµ ,uν ]
}

ΨN ,(2.10)

L
(3)

πN = Ψ̄N

{
−d1 +d2

4m

(
[uµ , [Dν ,uµ ]+ [Dµ ,uν ]]Dν +h.c.)

+
d3

12m3 ([uµ , [Dν ,uλ ]](D
µDνDλ + sym.)+h.c.

)
+ i

d5

2m
([χ−,uµ ]Dµ +h.c.)

+i
d14−d15

8m
(σ µν〈[Dλ ,uµ ]uν −uµ [Dν ,uλ ]〉Dλ +h.c.)+

d16

2
γ

µ
γ

5〈χ+〉uµ

+
id18

2
γ

µ
γ

5[Dµ ,χ−]

}
ΨN , (2.11)

L
(1)

π∆
= −Ψ̄

i
µξ

3
2

i j

{(
i /D jk−m∆δ

jk
)

gµν + iA
(

γ
µDν , jk + γ

νDµ, jk
)

+
i
2
(3A2 +2A+1)γµ /D jk

γ
ν +m∆δ

jk(3A2 +3A+1)γµ
γ

ν

+
g1

2
/u jk

γ5gµν +
g2

2
(γµuν , jk +uν , jk

γ
µ)γ5 +

g3

2
γ

µ/u jk
γ5γ

ν

}
ξ

3
2

kl Ψ
l
ν , (2.12)

L
(2)

π∆
= a1Ψ̄

i
µξ

3
2

i j Θ
µα(z)〈χ+〉δ jkgαβ Θ

βν(z′)ξ
3
2

kl Ψ
l
ν , (2.13)

L
(1)

πN∆
= hΨ̄

i
µξ

3
2

i j Θ
µα(z1) ω

j
αΨN +h.c. , (2.14)

L
(2)

πN∆
= Ψ̄

i
µξ

3
2

i j Θ
µα(z2)

[
ib3ω

j
αβ

γ
β + i

b8

m
ω

j
αβ

iDβ

]
ΨN +h.c. , (2.15)

L
(3)

πN∆
= Ψ̄

i
µξ

3
2

i j Θ
µν(z3)

[
f1

m
[Dν ,ω

j
αβ

]γα iDβ − f2

2m2 [Dν ,ω
j

αβ
]{Dα ,Dβ}

+ f4ω
j

ν〈χ+〉+ f5[Dν , iχ
j
−]
]

ΨN +h.c.. (2.16)

In the above Lagrangians, pion fields are contained in the U matrix, the nucleon and ∆ fields
are indicated by ΨN and Ψi

µ respectively. Here 〈 〉 denotes the trace in flavor space, F is the pion
decay constant in the chiral limit, and l3, l4 are mesonic LECs. Furthermore, m and g denote the
nucleon bare mass and the bare axial coupling constant, respectively. The LECs ci and d j have
dimension GeV−1 and GeV−2, respectively. m∆ and g1, g2, g3, a1 are the bare mass of the delta
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and bare coupling constants, respectively. Further, Θµα = gµα + zγµγν , where z is a so-called off-
shell parameter. Finally, the bare pion-nucleon-delta coupling constant at lowest order is denoted
by h and b3, b8, f1, f2, f4 and f5 are bare LECs of higher orders. Note that in fact the operators
concerning b3, b8, f1, f2, f4 and f5 are redundant in the sense that their contributions can be taken
into account by the redefinition of h in the leading-order delta exchanges and the LECs in the
contact terms [20]. The parameters z1, z2 and z3 are off-shell parameters in the πN∆ interactions.
However, they do not contribute in physical quantities. Definitions on covariant derivatives and
chiral operators are referred to Ref. [20].

2.3 Calculation procedure

The procedure of calculating the πN scattering amplitudes, or the A,B functions, is explained
in the following. First, all the relevant Feynman rules are derived from the chiral effective La-
grangians given in the previous subsection. Here I list all of them in the appendix for easy ref-
erence. Second, all the possible one-particle irreducible topologies, i.e., Feynman diagrams, are
drawn (see Fig. 1-3 in Ref. [20]), with the help of the so-called small-scale-expansion (SSE) power
counting rule [24, 23]. In SSE, the chiral order of the ∆ propagator is counted the same as the one
of the nucleon propagator . Third, the scattering amplitudes are calculated diagram by diagram
by inserting the Feynman rules into the topologies. Usually, this can be easily done by computer
using the popular Mathematica package FeynCalc [25, 26]. However, here I use a more efficient
Mathematica package called AmpCalc written by myself and Feng-Kun Guo [27]. Fourth, wave
function renormalzation is performed to get the full one-loop scattering amplitudes. The one-loop
amplitudes are expressed in terms scalar one-loop integrals and then simultaneously expanded in
terms of small parameters, Mπ , s−m2

N and t. The ultraviolet (UV) divergences and the PCB terms
are cancelled order by order by shifting the LECs in the tree amplitudes, which leads to

X ≡ XR +
δ̄X

16π2F2 R+
¯̄
δX

16π2F2 , X ∈ {g,h,m,m∆,a1,ci=1,·4} , (2.17)

Y ≡ YR +
δ̄Y

16π2F2 R , Y ∈ {`3, `4,d1 +d2,d3,d5,d14−d15,d18−2d16} , (2.18)

where XR and YR are renormalized parameters and R ≡ 2/(d−4)+ γE −1− ln(4π), and γE is the
Euler number. The subscript R is always omitted if there is no confusion caused.

2.4 Results

The S- and P-wave phase shifts generated by the recent Roy-Steiner-equation analysis (RS) of
the πN scattering [29], with both the central values and the errors of results given by Schenk-like or
conformal parameterizations, are fitted with the delta-less (i.e., Fit-I: up to 1.11 GeV) and delta-full
(i.e., Fit-III: up to 1.2 GeV for P33 and up to 1.11 GeV for the other waves) BChPT results. The
fitting results are displayed in Fig. 2. Fit-III improves the predictions beyond fitting ranges in most
of the partial waves due to the inclusion of the delta contribution. Predictions on the scattering
lengths and higher-order partial-wave phase shifts are also obtained, for more details see Ref. [20].
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— ∆-less results —
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— ∆-full results —
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Figure 2: Phase shifts obtained from delta-less and delta-full BChPT. Dots with error bars correspond
to the RS phase shifts, while circles without error bars stand for the GWU phase shifts. The solid (red)
lines represent the results of the current work. The red narrow error bands correspond to the uncertainties
propagated from the errors of LECs. The wide dashed error bands correspond to the theoretical uncertainties
due to the truncation of the chiral series estimated by using the approach proposed in Ref. [28].

3. Further studies and applications

In the same framework as discussed in the previous section, the study of elastic πN scattering
has been extended up to one-order higher, i.e. next-to-next-to-next-to-leading order (NNNLO), by
performing a combined analysis of πN → πN and πN → ππN reactions in Ref. [30]. For easy
comparison to HB results, a modified EOMS scheme has been employed, which only affects the
values of the LECs at the highest order under consideration. In addition, experimental data on
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differential cross sections and polarizations, instead of phase shifts, are fitted in order to determine
the LECs more reliably, though only tree-level contribution of ∆ resonances is included.

On the other hand, the values of the LECs obtained in Ref. [20], especially the ones relevant
to ∆ interactions, are applied to the extraction of nucleon axial charge and radius [31], to the
calculations of the cross sections of the weak pion productions [32, 33], etc..

4. Summary and outlook

I have reviewed the study of πN scattering in a covariant BChPT with ∆ resonances as explicit
degrees of freedom. Experimental data and phase-shift data can be well described by the obtained
chiral results. The determined values of the LECs are important for the predictions of other rele-
vant physical quantities or processes in the same framework. Future investigation on the explicit
inclusion of Roper resonance in πN scattering should be important for the inelastic case.

Acknowledgements
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Appendix: Feynman rules

Based on the effective Lagrangians, it is straightforward to derive the Feynman rules that are
relevant to the calculation of πN scattering up to and including O(p3). In this appendix, all of them
are listed item by item, for the sake of easy references.

A.1 Propagators

• Pion propagator: an incoming pion with momentum q and isospin index a, an outgoing pion
with momentum q and isospin index b

i∆ab
F (q) =

iδ ab

q2−M2 + i0+
. (1)

• Nucleon propagator: an incoming nucleon with momentum p, an outgoing nucleon with
momentum p

iSF(p) =
i

/p−m+ i0+
. (2)

• Delta propagator (d dimension and A = −1): an outgoing delta with momentum p, Dirac
index µ and isospin index i, an incoming delta with momentum p, Dirac index ν , and isospin
index j,

iSµν

F,i j(p) = −
i(/p+m∆)

p2−m2
∆
+ i0+

[
gµν − 1

d−1
γ

µ
γ

ν +
1

(d−1)m∆

(pµ
γ

ν − γ
µ pν)

− d−2
(d−1)m2

∆

pµ pν

]
ξ

3
2

i j . (3)
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A.2 Pion self-interacting vertex

• O(p2), ππ: two incoming pions (momenta qa and qb, isospins a and b, in order)

−2iM2

F2

[
(`3 + `4)M2 + `4qa ·qb

]
δab . (4)

• O(p2), ππππ: four incoming pions (momenta qa, qb, qc and qd , isospins a, b, c and d, in
order)

i
3F2 { δabδcd [2(qa ·qb +qc ·qd)− (qa +qb) · (qc +qd)+M2]

+ δacδbd [2(qa ·qc +qb ·qd)− (qa +qc) · (qb +qd)+M2]

+ δadδbc[2(qa ·qd +qb ·qc)− (qa +qd) · (qb +qc)+M2]} . (5)

A.3 Pion-nucleon interacting vertices

• O(p2), NN: an outgoing nucleon and an incoming nucleon,

4i c1M2 . (6)

• πNN: an outgoing nucleon, an incoming nucleon and an incoming pion (momentum qa,
isospin a),

O(ε) : − g
2F /qaγ

5
τa ,

O(ε3) :
d18−2d16

F
M2

/qaγ
5
τa . (7)

• ππNN: an outgoing nucleon (momentum p′), an incoming nucleon (momentum p) and two
incoming pion (momenta qa and qb, isospins a and b, in order),

O(ε) :
1

4F2 εabcτc(/qa−/qb) ,

O(ε2) : − 1
F2

{
4i c1M2 +

c2

m2 (p′ ·qa p′ ·qb + p ·qa p ·qb)+2i c3qa ·qb

}
δab

+
i c4

F2 εabcτcσµνqµ
a qν

b ,

O(ε3) :
1

mF2

{[
(d1 +d2)qa ·qb(qb−qa) · p′+

d3

m2 p′ ·qa p′ ·qb p′ · (qb−qa)

−2d5M2 p′ · (qb−qa)
]

εabcτc

−d14−d15

2
σµν(qλ

a qµ
a qν

b +qν
a qλ

b qµ

b )p′
λ

δab

}
+(p′→ p) . (8)

• O(p), 3πNN: an incoming nucleon, an outgoing nucleon and three incoming pions (mo-
menta qa, qb and qc, isospins a, b and c, in order),

g
12F3 [τaδbc(2/qa−/qb−/qc)+ τbδac(2/qb−/qa−/qc)+ τcδab(2/qc−/qa−/qb)]γ

5 . (9)
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• O(p), 4πNN: an incoming nucleon, an outgoing nucleon and four incoming pions (momenta
qa, qb qc and qd , isospins a, b, c and d, in order),

− 1
24F4 [ δabεcdeτe(/qc−/qd)+δacεbdeτe(/qb−/qd)+δadεbceτe(/qb−/qc)

+ δbcεadeτe(/qa−/qd)+δbdεaceτe(/qa−/qc)+δcdεabeτe(/qa−/qb)] . (10)

A.4 Pion-delta interacting vertices (here set A =−1, hence g1 =−g2 =−g3)

• O(p2), ∆∆: an outgoing delta (spin µ , isospin i), an incoming delta (spin ν , isospin j)

4iM2
Θµµ ′(z)Θµ ′ν(z)ξ

3
2

i j . (11)

• O(p), π∆∆: an outgoing delta (spin µ , isospin i), an incoming delta (spin ν , isospin n) and
an incoming pion (momentum qa, isospin a),

g1

2F2 ξ
3
2

i j τaξ
3
2
jn

{
/qaγ5gµν − (γµqν

a +qµ
a γ

ν)γ5− γ
µ
/qaγ5γ

ν

}
. (12)

• O(p), ππ∆∆: an outgoing delta (Dirac µ , isospin i), an incoming delta (Dirac ν , isospin n)
and two incoming pions (momenta qa and qb, isospins a and b, in order),{

i
2F2

(
ξ

3
2

iaξ
3
2

bn−ξ
3
2

ibξ
3
2

an

)
− 1

4F2 ξ
3
2

i j εabcτcξ
3
2
jn

}
×{

(/qa−/qb)g
µν − [γµ(qa−qb)

ν + γ
ν(qa−qb)

µ ]+ γ
µ(/qa−/qb)γ

ν

}
. (13)

A.5 Pion-nucleon-delta interacting vertices

• π∆N: an outgoing delta (Dirac µ , isospin i), an incoming nucleon (momentum p) and an
incoming pion (momentum qa, isospin a),

O(p) : −gπN∆

F
(qµ

a + z1γ
µ
/qa)ξ

3
2

ia ,

O(p2) : − 1
F
(qµ

a + z2γ
µ
/qa)

{
b3/qa +

b8

m
p ·qa

}
ξ

3
2

ia , (14)

O(ε3) : − 1
F
(qµ

a + z3γ
µ
/qa)

{
1
m

[
f1/qa +

f2

m
p ·/qa

]
p ·/qa−2M2(2 f4− f5)

}
ξ

3
2

ia .

• πN∆: an outgoing nucleon, an incoming delta (Dirac µ , isospin i), and an incoming pion
(momentum qa, isospin a),

O(p) : −gπN∆

F
(qµ

a + z1/qaγ
µ)ξ

3
2

ai ,

O(p2)
1
F

{
b3/qa +

b8

m
p ·qa

}
(qµ

a + z2/qaγ
µ)ξ

3
2

ai , (15)

O(p3)
1
F

{
1
m

[
f1/qa +

f2

m
p ·/qa

]
p ·/qa−2M2(2 f4− f5)

}
(qµ

a + z3/qaγ
µ)ξ

3
2

ai .
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• O(p), 3π∆N: an outgoing delta (spin µ , isospin i), an incoming nucleon and three incoming
pions (momenta qa, qb and qc, isospins a, b and c, in order),

gπN∆

6F3 (gµν + z1γ
µ

γ
ν)

{
ξ

3
2

iaδbc(2qa−qb−qc)ν

+ξ
3
2

ibδac(2qb−qa−qc)ν +ξ
3
2

ic δab(2qc−qa−qb)ν

}
. (16)

• O(p), 3πN∆: an incoming nucleon, an outgoing delta (spin µ , isospin i) and three incoming
pions (momenta qa, qb and qc, isospins a, b and c, in order),

gπN∆

6F3

{
ξ

3
2

aiδbc(2qa−qb−qc)ν +ξ
3
2

biδac(2qb−qa−qc)ν

+ξ
3
2

ci δab(2qc−qa−qb)ν

}
(gνµ + z1γ

ν
γ

µ) . (17)

In the end, it is worthwhile to note that, the isospin- 3
2 projector ξ

3
2

i j occurring in the vertices,
which involves the ∆(1232) resonances, can be substituted by the isospin object δi j. Taking the
π∆N interacting vertices for example, it can also be rewritten as

−gπN∆

F
(qµ

a + z1γ
µ
/qa)δia .

This is due to the fact that the ∆(1232)-involving vertices in our consideration must be connected
by delta propagators and the equivalence is guaranteed by the property of projection operator, i.e.

ξ
3
2

i j ξ
3
2
jk = ξ

3
2

ik = δi jξ
3
2
jk.
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