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In this contribution we present a lattice calculation of the leading-order electromagnetic and
strong isospin-breaking (IB) corrections to the quark-connected hadronic-vacuum-polarization
(HVP) contribution to the anomalous magnetic moment of the muon. The results are obtained
adopting the RM123 approach in the quenched-QED approximation and using the QCD gauge
configurations generated by the ETM Collaboration with N f = 2+ 1+ 1 dynamical quarks, at
three values of the lattice spacing (a' 0.062,0.082,0.089 fm), at several lattice volumes and with
pion masses between ' 210 and ' 450 MeV. After the extrapolations to the physical pion mass
and to the continuum and infinite-volume limits the contributions of the light, strange and charm
quarks are respectively equal to δaHVP

µ (ud) = 7.1 (2.5) ·10−10, δaHVP
µ (s) =−0.0053 (33) ·10−10

and δaHVP
µ (c) = 0.0182 (36) · 10−10. At leading order in αem and (md −mu)/ΛQCD we obtain

δaHVP
µ (udsc) = 7.1 (2.9) · 10−10, which is currently the most accurate determination of the IB

corrections to aHVP
µ .
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1. Introduction

The anomalous magnetic dipole moments of charged leptons a` are defined as the deviations
of the spin gyromagnetic ratios g` from the result predicted by the Dirac equation, a` = (g`−2)/2.
Leptonic magnetic anomalies arise in quantum field theories as a result of virtual loop fluctuations.
In this respect, they can be viewed as windows to quantum loops including effects due to new
degrees of freedom beyond the Standard Model (SM) of Particle Physics.

In the case of the muon, aµ is one of the most accurately determined dimensionless physical
quantity in Nature: it is currently known both experimentally [1] and from a SM theoretical cal-
culation [2] to approximately 0.5 ppm. Intriguingly, there is a long-standing discrepancy between
the BNL E821 experimental value and the SM prediction at the 3σ ÷4σ level. Since this tension
might be an exciting indication of New Physics beyond the SM, an intense research program is
currently underway in order to achieve a significant reduction of the experimental and theoretical
uncertainties. New (g− 2) experiments at Fermilab (E989) [3] and J-PARC (E34) [4] aim at a
fourfold reduction of the experimental uncertainty such that a similar reduction in the theoretical
uncertainty is of timely interest. Hadronic loop contributions due to the HVP and hadronic light-
by-light terms [5] give rise to the main theoretical uncertainty and, with a view to the planned
experimental accuracy, they will soon become a major limitation of this SM test.

Nowadays the theoretical predictions for the hadronic contribution aHVP
µ are most accurately

determined using dispersion relations for relating the HVP function to the experimental cross
section data for e+e− annihilation into hadrons [6, 7]. However, since the pioneering works of
Refs. [8–10], lattice QCD calculations of aHVP

µ (see Ref. [11] for a recent review) have been made
an impressive progress providing a completely independent cross-check from first principles.

With the increasing accuracy of lattice calculations, it becomes mandatory to include electro-
magnetic (em) and strong IB corrections, which contribute to the HVP to O(α3

em) and O(α2
em(md−

mu)/ΛQCD), respectively. Here we present the results of a lattice calculation of the IB corrections to
the HVP contribution due to light-, strange- and charm-quark (connected) intermediate states, ob-
tained in Ref. [12] using the RM123 approach [13,14], which consists in the expansion of the path
integral in powers of the mass difference (md −mu) and of the em coupling αem. The quenched-
QED (qQED) approximation, which treats the dynamical quarks as electrically neutral particles,
has been adopted and quark-disconnected contractions have not been included yet because of the
large statistical fluctuations of the corresponding signals.

2. Isospin-breaking corrections in the RM123 approach

We have evaluated the HVP contribution aHVP
µ to the muon (g− 2) by adopting the time-

momentum representation [15], namely

aHVP
µ = 4α

2
em

∫
∞

0
dt Kµ(t)V (t) , (2.1)

where the kernel function Kµ(t) is given by

Kµ(t) =
4

m2
µ

∫
∞

0
dω

1√
4+ω2

(√
4+ω2−ω√
4+ω2 +ω

)2[
cos(ωmµt)−1

ω2 +
1
2

m2
µt2
]

(2.2)
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with mµ being the muon mass. In Eq. (2.1) the quantity V (t) is the vector current-current Euclidean
correlator defined as

V (t)≡−1
3 ∑

i=1,2,3

∫
d~x 〈Ji(~x, t)Ji(0)〉 , (2.3)

where
Jµ(x)≡ ∑

f=u,d,s,c,...
J f

µ(x) = ∑
f=u,d,s,c,...

q f ψ f (x)γµψ f (x) (2.4)

is the em current with q f being the electric charge of the quark with flavor f in units of the electron
charge e, while 〈...〉 means the average of the T -product over gluon and quark fields.

We consider only the quark-connected HVP contributions, thus neglecting off-diagonal flavor
terms. In this case each quark flavor f contributes separately

aHVP
µ = ∑

f=u,d,s,c,...
[aHVP

µ ( f )](conn) . (2.5)

For sake of simplicity we drop the suffix (conn), but it is understood that in the following we refer
always to quark-connected contractions only.

In the RM123 method of Refs. [13, 14] the vector correlator for the quark flavor f , Vf (t), is
expanded into a lowest-order contribution V (0)

f (t), evaluated in isospin-symmetric QCD (i.e. mu =

md and αem = 0), and a correction δVf (t) computed to leading order in the small parameters (md−
mu)/ΛQCD and αem:

Vf (t) =V (0)
f (t)+δVf (t)+ . . . , (2.6)

where the ellipses stand for higher order terms in (md−mu)/ΛQCD and αem.
The separation between the isosymmetric QCD and the IB contributions, V (0)

f (t) and δVf (t),
is prescription dependent. As in Ref. [12], here we impose the matching condition in which the
renormalized coupling and quark masses in the full theory, αs and m f , and in isosymmetric QCD,
α
(0)
s and m(0)

f , coincide in the MS scheme at a scale of 2 GeV. Such a prescription is known as the
Gasser-Rusetsky-Scimemi (GRS) one [16].

The calculation of the IB correlator δVf (t) requires the evaluation of the self-energy, exchange,
tadpole, pseudoscalar and scalar insertion diagrams depicted in Fig. 1. More specifically, the IB
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diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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(a) (b) (c) (d) (e)

Figure 1: Fermionic connected diagrams contributing to the IB corrections δaHVP
µ ( f ): self-energy (a), exchange (b),

tadpole (c), pseudoscalar (d) and scalar (e) insertions. Solid lines represent the propagators of the quark with flavor f
in isosymmetric QCD.

corrections δVf (t) consists of two (prescription-dependent) contributions: the em, δV QED
f (t), and

the strong IB (SIB), δV SIB
f (t), one. Diagrams (1a)-(1d) contribute to the em corrections only,

while the diagram (1e) to both δV QED
f (t) and δV SIB

f (t). Tadpole insertions (1c) are a feature of
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lattice discretization and play a crucial role in order to preserve gauge invariance to O(αem) in
the expansion of the quark action [14]. Since the lattice fermionic action used in this contribution
includes a Wilson term, the insertions of pseudoscalar densities (1d) account for regularization-
specific IB effects associated with the tuning of the quark critical masses in the presence of em
interactions [14, 17]. In the numerical evaluation of the photon propagator the zero-mode has been
removed according to the QEDL prescription [18], i.e. the photon field Aµ satisfies Aµ(k0,~k=~0)≡ 0
for all k0.

Within the qQED approximation and neglecting quark-disconnected diagrams, the QED cor-
relator δV QED

f (t) is proportional to αem q4
f . Instead, the SIB one δV SIB

f (t) is proportional to

q2
f (m

(0)
f −m f ). Since in the GRS prescription we require m(0)

f (MS,2 GeV) = m f (MS,2 GeV) for
f = (ud),s,c, the SIB correlator at the renormalization scale µ = 2 GeV receives non-vanishing
leading-order contributions only in the light quark sector (since md = mu = mud). In that case
the correction [δV SIB

ud (t)](MS,2 GeV) is proportional to the light-quark mass difference, whose
value, md−mu = 2.38(18) MeV has been determined in Ref. [17] at the physical pion mass in the
MS(2 GeV) scheme by using as inputs the experimental charged- and neutral-kaon masses.

The isosymmetric QCD gauge ensembles used in this contribution are the same adopted
in Ref. [12], i.e. those generated by the European (now Extended) Twisted Mass Collaboration
(ETMC) with N f = 2+1+1 dynamical quarks, which include in the sea, besides two light mass-
degenerate quarks, also the strange and the charm quarks with masses close to their physical val-
ues [19]. The gauge fields are simulated using the Iwasaki gluon action [20], while for sea quarks
the Wilson Twisted Mass action [21] is employed. Working at maximal twist our setup guarantees
an automatic O(a)-improvement [22]. We consider three values of the inverse bare lattice coupling
β , corresponding to lattice spacings varying from 0.089 to 0.062 fm, pion masses in the range
Mπ ' 220÷490 MeV and different lattice volumes. For earlier investigations of finite volume ef-
fects (FVEs) the ETM Collaboration had produced three dedicated ensembles, A40.20, A40.24 and
A40.32, which share the same quark mass (corresponding to Mπ ' 320 MeV) and lattice spacing
(a' 0.09 fm) and differ only in the lattice size L (L/a= 20÷32). To improve such an investigation
a further gauge ensemble, A40.40, has been generated at a larger value of the lattice size, L/a = 40.
For further details of the lattice simulations we refer the reader to the Appendix of Ref. [12].

In our numerical simulations we have adopted the following local version of the vector current
(see Eq. (2.4)):

Jµ(x) = ZA q f ψ f ′(x)γµψ f (x) , (2.7)

where ψ f ′ and ψ f represent two quarks with the same mass, charge and flavor, but regularized with
opposite values of the Wilson r-parameter (i.e. r f ′ =−r f ). Being at maximal twist the current (2.7)
renormalizes multiplicatively with the renormalization constant (RC) ZA of the axial current. By
construction the local current (2.7) does not generate quark-disconnected diagrams. As discussed
in Ref. [23], the properties of the kernel function Kµ(t) in Eq. (2.1), guarantee that the contact
terms, generated in the HVP tensor by a local vector current, do not contribute to aHVP

µ .
Since we have adopted the renormalized vector current (2.7), the em correlator δV QED

f (t)
receives a contribution from the em corrections to the RC of the vector current of Eq. (2.7) as well,
namely

ZA = Z(0)
A

(
1+

αem

4π
ZA

)
+O(αm

emα
n
s ) , (m > 1, n≥ 0) (2.8)
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where Z(0)
A is the RC of the axial current in pure QCD (determined in Ref. [24]), while the product

Z(0)
A ZA encodes the corrections to first order in αem. The quantity ZA can be written as

ZA = Z
(1)

A ·Z f act
A , (2.9)

where Z
(1)

A = −15.7963 q2
f is the pure QED correction to leading order in αem given by [25, 26]

and Z f act
A takes into account QCD corrections of order O(αn

s ) with n≥ 1 to Eq. (2.9). It represents
the QCD correction to the “naive factorization” approximation ZA = Z

(1)
A (i.e. Z f act

A = 1) adopted
in Ref. [23]. We make use of the non-perturbative determination performed in Ref. [27] within the
RI′-MOM scheme.

Similarly, the em corrections to the mass RC Zm enter in δV QED
f (t). For our maximally

twisted-mass setup 1/Zm = ZP and Z(0)
P is the RC of the pseudoscalar density evaluated in Ref. [24]

in isosymmetric QCD, in the MS(2 GeV) scheme. The pure QED contribution Z
(1)

P = q2
f [6 ln(aµ)

−22.5954] to leading order in αem is given in the MS scheme at the renormalization scale µ

by [25, 26]. The values adopted for the coefficients Z f act
P and Z f act

A are collected in Table V of
Ref. [12].

3. Results

A convenient procedure [23,28] relies on splitting Eq. (2.1) into two contributions correspond-
ing to 0 ≤ t ≤ Tdata and t > Tdata, respectively. In the first contribution the vector correlator is
numerically evaluated on the lattice, while for the second contribution an analytic representation is
required. If Tdata is large enough that the ground-state contribution is dominant for t > Tdata and
smaller than T/2 in order to avoid backward signals, the IB corrections δaHVP

µ ( f ) for the quark
flavor f can be written as

δaHVP
µ ( f )≡ δaHVP

µ (<)+δaHVP
µ (>) (3.1)

with

δaHVP
µ (<) = 4α

2
em

Tdata

∑
t=0

Kµ(t) δVf (t) , (3.2)

δaHVP
µ (>) = 4α

2
em

∞

∑
t=Tdata+a

Kµ(t)
Z f

V

2M f
V

e−M f
V t

[
δZ f

V

Z f
V

−
δM f

V

M f
V

(1+M f
V t)

]
, (3.3)

where M f
V is the ground-state mass of the lowest-order correlator V (0)

f (t) and Z f
V is the squared ma-

trix element of the vector current between the ground-state |Vf 〉 and the vacuum: Z f
V ≡ (1/3)∑i=x,y,z

q2
f |〈0|ψ f (0)γiψ f (0)|Vf 〉|2. In Refs. [23, 28] the ground-state masses M f

V and the matrix elements

Z f
V have been determined for f = (ud),s,c using appropriate time intervals tmin ≤ t ≤ tmax for each

value of β and of the lattice volume for the ETMC gauge ensembles adopted in this contribution.
The quantities δM f

V and δZ f
V in Eq. (3.3) can be extracted respectively from the “slope” and

the “intercept” of the ratio δVf (t)/V (0)
f (t) at large time distances (see Refs. [12–14, 17, 23]). We

have checked that the sum of the two terms in the r.h.s. of Eq. (3.1) is independent of the specific
choice of the value of Tdata within the statistical uncertainties [12, 23]. The time dependences of

4
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the integrand functions Kµ(t)δV QED
f (t) for f = (ud),s,c and Kµ(t)δV SIB

ud (t) are shown in Fig. 2
in the cases of the ETMC gauge ensembles B55.32 and D20.48. After summation over the time
distance t, the SIB contribution dominates over the QED one.
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Figure 2: Time dependence of the integrand functions Kµ (t)δV SIB
ud (t) (top-right panel) and Kµ (t)δV QED

f (t) for the
light- (top-left panel), strange- (bottom-left panel) and charm-quark (bottom-right panel) contributions to the IB correc-
tions δaHVP

µ ( f ) [see Eq. (3.2)] in the cases of the ETMC gauge ensembles B55.32 (Mπ ' 375 MeV, a ' 0.082 fm) and
D20.48 (Mπ ' 260 MeV, a' 0.062 fm). In the panels the labels “self”, “exch”, “T+PS”, “S’, “ZA” indicate the QED
contributions of the diagrams (1a), (1b), (1c)+(1d), (1e) and the one generated by the QED corrections to the RC of the
local vector current.

The accuracy of the lattice data can be improved by forming the ratio of the IB corrections
δaHVP

µ ( f ) over the leading-order terms aHVP,(0)
µ ( f ), which is shown in the case of the light-quark

contribution in Fig. 3. The attractive feature of this ratio is to be less sensitive to some of the
systematics effects, in particular to the uncertainties of the scale setting.

For the combined extrapolations to the physical pion mass and to the continuum and infinite-
volume limits we have adopted the following fit ansatz:

δaHVP
µ (ud)

aHVP,(0)
µ (ud)

= δA`
0

[
1+δA`

1 mud +δA`
1` mud ln(mud)+δA`

2 m2
ud +δD` a2 +δ

`
FV E

]
, (3.4)

where the FVE term is estimated by using alternatively one of the fitting functions (see later on)

δ
`
FV E = δF` e−ML or

δ
`
FV E = δ F̂`

n
M2

16π2 f 2
0

e−ML

(ML)n
(n =

1
2
, 1,

3
2
, 2) (3.5)
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Figure 3: Results for the ratio δaHVP
µ (ud)/aHVP,(0)

µ (ud) versus the renormalized average u/d mass mud in the
MS(2 GeV) scheme. The empty markers correspond to the raw data, while the full ones represent the lattice data
corrected by the FVEs obtained in the fitting procedure (3.4) with δA`

1` = 0 and δA`
2 6= 0. The solid lines correspond to

the results of the combined fit (3.4) obtained in the infinite-volume limit at each value of the lattice spacing. The black
asterisk represents the value of the ratio δaHVP

µ (ud)/aHVP,(0)
µ (ud) extrapolated to the physical pion mass, corresponding

to mphys
ud (MS,2 GeV) = 3.70 (17) MeV and to the continuum and infinite-volume limits, while the red area indicates the

corresponding uncertainty as a function of mud at the level of one standard deviation. Errors are statistical only.

with B0 and f0 being the leading-order low-energy constants of Chiral Perturbation Theory (ChPT)
and M2 ≡ 2B0mud . For the chiral extrapolation we consider either a quadratic (δA`

1` = 0 and δA`
2 6=

0) or a logarithmic (δA`
1` 6= 0 and δA`

2 = 0) dependence. Half of the difference of the corresponding
results extrapolated to the physical pion mass is used to estimate the systematic uncertainty due
to the chiral extrapolation. Discretization effects play a minor role and, for our O(a)-improved
simulation setup, they can be estimated by including (δD` 6= 0) or excluding (δD` = 0) the term
proportional to a2 in Eq. (3.4). The free parameters to be determined by the fitting procedure are
δA`

0, δA`
1, δA`

1` (or δA`
2), δD` and δF` (or δ F̂`

n ).

Before discussing the result of the fitting procedure we focus more on the FVEs and comment
on the choice of the fitting functions of Eqs. (3.5). For the separate QED and SIB contributions
the FVEs differ qualitatively and quantitatively, as shown in Fig. 6 of Ref. [12]. In the case of
the QED data a power-law behavior in terms of the inverse lattice size 1/L is expected to start to
O(1/L3) because of the overall neutrality of the system [12, 23, 29]. In the case of the SIB cor-
relator, since a fixed value md −mu = 2.38(18) MeV [17] is adopted for all gauge ensembles, an
exponential dependence in terms of the quantity MπL is expected [30]. Since the SIB contribu-
tion dominate over the QED one (see Fig. 2), the FVEs for the ratio δaHVP

µ (ud)/aHVP,(0)
µ (ud) are

expected to be mainly exponentially suppressed in MπL. 1 We remind the reader that the lowest-
order term aHVP,(0)

µ (ud) has non-negligible FVEs, which are exponentially suppressed in terms of

MπL [28, 30, 31]. In Ref. [28] the FVEs on aHVP,(0)
µ (ud) have been evaluated by using the same

lattice setup adopted here and developing an analytic representation of the vector correlator based

1Had we used in fitting our data (3.4) δ `
FV E = δ F̃`/L3 we would have observed a change in the result (3.6) well

within the statistical uncertainty.
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on quark-hadron duality [32] at small and intermediate time distances and on the two-pion con-
tributions in a finite box [33] at larger time distances. After the extrapolation to the continuum
limit, the lattice estimates of FVEs turn out to be much larger than the corresponding predictions
of ChPT to NLO [34]. In Table 1 we collect the values of the ratio of the lattice FVEs, ∆lat

FV (L) ≡
aHVP,(0)

µ (ud; L→∞)−aHVP,(0)
µ (ud; L), computed in Ref. [28] at the physical pion mass over the cor-

responding NLO ChPT predictions, ∆
ChPT,NLO
FV (L). The NNLO ChPT corrections ∆

ChPT,NNLO
FV (L)

have been recently computed in Ref. [35] and the ratio ∆
ChPT,NNLO
FV (L)/∆

ChPT,NLO
FV (L) for physical

pion masses and lattices of size L = 5÷ 6 fm is found to be ' 1.4 (2), which points in the same
direction as our lattice corrections ∆lat

FV (L = 5÷ 6 fm)/∆
ChPT,NLO
FV (L = 5÷ 6 fm) ' 1.7 (1) (see

Table 1).

Mphys
π L L (fm) ∆lat

FV (L)/∆
ChPT,NLO
FV (L)

2.7 4.0 2.17(17)
3.1 4.5 1.95(13)
3.4 5.0 1.79(10)
3.8 5.5 1.68(8)
4.1 6.0 1.60(6)
4.8 7.0 1.48(4)
5.5 8.0 1.37(5)

Table 1: Values of the ratio of the lattice FVEs, ∆lat
FV (L) ≡ aHVP,(0)

µ (ud; L → ∞)− aHVP,(0)
µ (ud; L), computed in

Ref. [28] at the physical pion mass Mphys
π ' 135 MeV over the NLO ChPT ones, ∆

ChPT,NLO
FV (L).

At the physical pion mass and in the continuum and infinite-volume limits we have obtained [12]

δaHVP
µ (ud)

aHVP,(0)
µ (ud)

= 0.0115 (18)stat+ f it (21)input (20)chir (19)FVE (9)a2 [40] , (3.6)

where the errors come in the order from (statistics + fitting procedure), input parameters of the
eight branches of the quark mass analysis of Ref. [24], chiral extrapolation, finite-volume and
discretization effects. In Eq. (3.6) the uncertainty in the square brackets corresponds to the sum in
quadrature of the statistical and systematic errors.

Using the leading-order result aHVP,(0)
µ (ud) = 619.0 (17.8) · 10−10 from Ref. [28], our deter-

mination of the leading-order IB corrections δaHVP
µ (ud) is

δaHVP
µ (ud) = 7.1 (1.1)stat+ f it (1.3)input (1.2)chir (1.2)FVE (0.6)a2 [2.5] ·10−10 , (3.7)

which comes (within the GRS prescription) from the sum of the QED contribution[
δaHVP

µ (ud)
](QED)

= 1.1 (1.0) ·10−10 (3.8)

and of the SIB one [
δaHVP

µ (ud)
](SIB)

= 6.0 (2.3) ·10−10 . (3.9)

The above results show that the IB correction (3.7) is dominated by the strong SU(2)-breaking
term, which corresponds roughly to ≈ 85% of δaHVP

µ (ud).

7



P
o
S
(
C
D
2
0
1
8
)
0
6
3

Isospin-breaking corrections to aHV P
µ D. Giusti

Our determination (3.7), obtained with N f = 2+1+1 dynamical flavors of sea quarks, agrees
within the errors with and is more precise than both the phenomenological estimate δaHVP

µ (ud) =
7.8 (5.1) ·10−10, obtained by the BMW Collaboration [36] using results of the dispersive analysis
of e+e− data [37], and the lattice determination δaHVP

µ (ud) = 9.5 (10.2) · 10−10, obtained by the
RBC/UKQCD Collaboration [38] at N f = 2+ 1, which includes also one disconnected QED dia-
gram. Recently, adopting N f = 1+1+1+1 simulations, the FNAL/HPQCD/MILC Collaboration

has found for the SIB contribution the value
[
δaHVP

µ (ud)
](SIB)

= 9.0 (4.5) ·10−10 [39].
Thanks to the recent non-perturbative evaluation of QCD+QED effects on the RCs of bilinear

operators performed in Ref. [27] we have updated the determinations of the strange δaHVP
µ (s) and

charm δaHVP
µ (c) contributions to the IB effects made in Ref. [23], obtaining a drastic improvement

of the uncertainty by a factor of ≈ 3 and ≈ 3.5, respectively. In Fig. 4 the updated results for the
ratios δaHVP

µ ( f )/aHVP,(0)
µ ( f ) for f = s,c are shown.
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Figure 4: Results for the strange (left panel) and charm (right panel) contributions to δaHVP
µ /aHVP,(0)

µ versus the
renormalized average u/d mass mud . The solid lines correspond to the linear fit (3.10) including the discretization term
in the infinite-volume limit. The black asterisks represent the results of the extrapolation to the physical pion mass and
to the continuum and infinite-volume limits while the red area indicates the corresponding uncertainty as a function of
mud at the level of one standard deviation. Errors are statistical only.

By adopting the same fitting function (5.13) of Ref. [23], namely

δaHVP
µ (s,c)

aHVP,(0)
µ (s,c)

= δAs,c
0 +δAs,c

1 mud +δDs,c a2 +δFs,c 1
L3 (3.10)

and after the extrapolations to the physical pion mass and to the continuum and infinite-volume
limits we have found

δaHVP
µ (s)

aHVP,(0)
µ (s)

= −0.00010 (6)stat+ f it (2)input (1)chir (1)FVE (1)a2 [7]% , (3.11)

δaHVP
µ (c)

aHVP,(0)
µ (c)

= 0.00123 (24)stat+ f it (4)input (1)chir (2)FVE (1)a2 [25]% (3.12)

where the error budget has been obtained as in Ref. [23].
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Using the leading-order results aHVP,(0)
µ (s) = 53.1 (2.5) ·10−10 and aHVP,(0)

µ (c) = 14.75 (0.56) ·
10−10 [23], our updated IB determinations are [12]

δaHVP
µ (s) = −0.0053 (30)stat+ f it (13)input (2)chir (2)FVE (1)a2 [33] ·10−10 , (3.13)

δaHVP
µ (c) = 0.0182 (35)stat+ f it (5)input (1)chir (3)FVE (1)a2 [36] ·10−10 (3.14)

to be compared with δaHVP
µ (s) = −0.018 (11) · 10−10 and δaHVP

µ (c) = −0.030 (13) · 10−10 given
in Ref. [23]. The updated results confirm that the em corrections δaHVP

µ (s) and δaHVP
µ (c) are

negligible with respect to the current uncertainties of the corresponding lowest-order terms. Re-
cently [38] in the case of the strange contribution the RBC/UKQCD Collaboration has found the
result δaHVP

µ (s) = −0.0149 (32) · 10−10, which deviates from our finding (3.13) by ≈ 2 standard
deviations.

The sum of our three results (3.7), (3.13) and (3.14) yields the contribution of quark-connected
diagrams to δaHVP

µ within the qQED approximation, namely δaHVP
µ (udsc)|conn = 7.1 (2.6) ·10−10.

Recently, in Ref. [38] one QED disconnected diagram has been calculated in the case of the u- and
d-quark contribution and found to be of the same order of the corresponding QED connected term.
Thus, we estimate that the uncertainty related to the qQED approximation and to the neglect of
quark-disconnected diagrams is approximately equal to our QED contribution (3.8), obtaining

δaHVP
µ (udsc) = 7.1 (2.6) (1.2)qQED+disc [2.9] ·10−10 , (3.15)

which represents the most accurate determination of the IB contribution to aHVP
µ to date.

Using the recent ETMC determinations of the lowest-order contributions of light, strange and
charm quarks, aHVP,(0)

µ (ud)= 619.0 (17.8)·10−10, aHVP,(0)
µ (s)= 53.1 (2.5)·10−10 and aHVP,(0)

µ (c)=
14.75 (0.56) · 10−10 [23, 28], and an estimate of the lowest-order quark-disconnected diagrams,
aHVP,(0)

µ (disc) = −12 (4) · 10−10, obtained using the results of Refs. [36] and [38], our finding
(3.15) for the IB corrections leads to an HVP contribution to the muon (g−2) equal to

aHVP
µ = 682 (19) ·10−10 , (3.16)

which agrees within the errors with the recent determinations based on dispersive analyses of the
experimental cross section data for e+e− annihilation into hadrons (see, e.g., Ref. [40]).
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