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We present dispersive analyses of mesonic three-body decay amplitudes based on the fundamental

principles of analyticity, unitarity, and crossing. In this framework the leading final-state inter-

actions are fully taken into account, with the resulting amplitudes being solely dependent on the

respective two-body scattering phase shifts of the final-state mesons. The first part focuses on

η ′ → ηππ decays. This decay offers several features of interest: due to final-state interactions

it can be used to constrain πη scattering; in the soft-pion limit two Adler zeros are predicted;

and the neutral decay channel η ′ → ηπ0π0 shows a cusp effect within the physical decay re-

gion. In the second part we study the quark-mass dependence of ω → 3π decays. We rely on the

quark-mass-dependent scattering phase shift for the ππ P-wave extracted from unitarized chiral

perturbation theory. The described formalism may be used as an extrapolation tool for lattice

QCD calculations of three-pion decays, for which ω → 3π can serve as a paradigm case.†
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1. Introduction

The decay η ′ → ηππ has received considerable interest in past years for several reasons.

Due to the U(1)A anomaly the η ′ is not a Goldstone boson and therefore cannot be described

in “standard” chiral perturbation theory (ChPT). Hence, extended versions like large-Nc ChPT

and resonance chiral theory (RChT) are needed to account for interactions involving the η ′ [3, 4].

Experimental measurements of the Dalitz plot of the charged channel have been performed by

VES [5] and BES-III [6, 7], for the neutral channel by the GAMS-4π [8], A2 [9], and BES-III [7]

collaborations. Since the mass of the η ′ is still sufficiently small so that η ′ → ηππ decays are

not polluted by nonvirtual KK̄ intermediate states, it could be used to constrain πη scattering.

Furthermore, the η ′ → ηπ0π0 decay channel is expected to show a cusp effect at the charged-pion

threshold [10], similar to what has been studied extensively for K → 3π decays (see Ref. [11] and

references therein). This phenomenon has recently been confirmed by the A2 collaboration [9]. In

the following we use a dispersion-theoretical approach to study η ′ → ηππ decays.

Decays of light isoscalar vector mesons into three pions are an ideal paradigm case for testing

dispersion relations. Due to Bose symmetry only odd partial waves are allowed to contribute, so

neglecting F- and higher partial wave discontinuities, the decay is fully described by the P-wave

ππ amplitudes. The dispersive framework to describe this decay was already used in previous

studies of ω/φ → 3π [12,13] as well as the related processes γ∗π → ππ [14–19]. Here we want to

assess the quark-mass dependence of the ω → 3π decay amplitude based on dispersion relations,

which requires the quark-mass dependent ππ phase shift as input. While we still need to rely

on effective-field-theory ideas to describe the variation of the ω mass with the quark masses, the

dispersive framework allows us to predict its quark-mass-dependent width. The idea to employ

dispersion theory to extend the applicability of quark-mass-dependent phase shifts is not new: it

has already been applied to describe the pion vector form factor [20], as well as, in a formalism

closely related to what we present here, to the reaction γ∗π → ππ [19].

2. Dispersion relations for η ′ → ηππ

The dispersion relations for the decay η ′ → ηππ are set up in analogy to previous work on

different decays into three pions [12, 21–23]. The amplitude is decomposed in terms of functions

of one Mandelstam variable only that only possess a right hand cut, which leads to the form

M (s, t,u) = M0(s)+M1(t)+M1(u) . (2.1)

Here, MI refers to functions of isospin I: isospin conservation constrains the total isospin of the

final-state pion pair to I = 0, while the πη system has I = 1. Equation (2.1) follows from a partial-

wave expansion of the discontinuities in fixed-s, -t, and -u dispersion relations when restricted to

S-waves. The unitarity relations for the single-variable functions MI along the right-hand cut are

given by

discMI(s) = 2iθ(s− sthr)
[

MI(s)+M̂I(s)
]

sin δI(s)e−iδI (s) , (2.2)

where the θ -function ensures the correct opening at the respective threshold sthr, i.e. 4M2
π for the ππ

and (Mη +Mπ)
2 for the πη channel. Below the opening of inelastic channels, δI(s) agrees with the
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Figure 1: Left panel: the isospin-zero ππ S-wave effective phase shift δ0(s), constructed with input

from [26, 27]. Right panel: the πη S-wave effective phase shift δ1(t) [28]. The boundaries of the al-

lowed physical region of the decay η ′ → ηππ are indicated by dashed vertical lines. Figures adapted from

Ref. [1].

phase of elastic ππ or πη scattering due to Watson’s final-state theorem [24]. The inhomogeneities

M̂I are given by

M̂0(s) =

∫ 1

−1
dzs M1

(

t(s,zs)
)

, M̂1(t) =
1

2

∫ 1

−1
dzt

[

M0

(

s(t,zt)
)

+M1

(

u(t,zt)
)]

, (2.3)

where zs,t define the cosine of the scattering angles in the s- and t-channel. Note that the analytic

continuation of Eq. (2.3) both in the Mandelstam variables and the decay mass Mη ′ involves several

subtleties, for further details see Ref. [25].

The crucial input in the dispersion relation consists of the ππ and πη S-wave phase shifts δ0

and δ1 shown in Fig. 1. In order to take inelastic KK̄ effects into account, while still solving a

single-channel dispersive problem (2.2) only, we resort to the construction of effective phase shifts.

Below the KK̄ threshold our phase δ0 agrees with the Roy solution [26]. In the inelastic regime we

continue the phase via a unitarized large-Nc ChPT prediction for η ′η → ππ/KK̄ using a coupled-

channel Omnès matrix [27]. This treatment generates a smooth phase drop by π with respect to the

elastic ππ scattering phase. For the πη phase shift δ1, we take the phase of the scalar form factor

F
πη

S extracted from a πη/KK̄ coupled-channel T -matrix [28] as input.

Assuming that the amplitude scales like a constant in the high-energy limit, we can write the

solutions of the unitarity relations Eq. (2.2) as

M0(s) = Ω0(s)

{

α +β s+
s2

π

∫ ∞

sthr

ds′

s′2
M̂0(s

′)sinδ0(s
′)

|Ω0(s′)|(s′− s)

}

,

M1(t) = Ω1(t)

{

γ t +
t2

π

∫ ∞

tthr

dt ′

t ′2
M̂1(t

′)sin δ1(t
′)

|Ω1(t ′)|(t ′− t)

}

, (2.4)

with three subtraction constants α , β , and γ . Here ΩI denotes the Omnès function [29] correspond-

ing to the phase δI . After solving the system of coupled integral equations Eqs. (2.3) and (2.4) with

an iterative numerical procedure, we have to determine the free parameters in the dispersion rela-

tion, i.e. the subtraction constants α , β , and γ . In experimental analyses of the η ′ → ηππ Dalitz
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Figure 2: Decay spectra for η ′ → ηπ+π− divided by the phase space dΦ̄(x,y), where both are individually

normalized. Left panel: integrated over the y-direction. Right panel: integrated over the x-direction. Figures

adapted from Ref. [1].

plot, the squared amplitude is expanded in terms of symmetrized coordinates x and y according to

|Mexp(x,y)|2 = |Nexp|2
{

1+ay+by2 +dx2 + . . .
}

, (2.5)

and the parameters a, b, d are fitted to experimental data (x ∝ (t−u) and y is linear in s, see [1]). For

our analysis, we have generated a pseudodata sample from the η ′ → ηπ+π− Dalitz-plot distribu-

tion [30] as measured by the BES-III collaboration [6]. The overall normalization of the amplitude

is constrained by the partial decay width [31].

Fitting real subtraction constants to the data yields χ2/ndof = 459/435 ≈ 1.06. In Fig. 2,

we display the decay spectrum integrated over the Dalitz-plot variables x or y, respectively. The

statistical “fit uncertainty” is dominated by the experimental uncertainty in the Dalitz-plot distribu-

tion, while the uncertainty due to the partial decay width is small. The very asymmetric systematic

“phase uncertainty” combines the error of the ππ and πη phase input, which is mainly generated

by the πη phase variation at high energies.

In the limit of one of the pion momenta going to zero, current algebra predicts two Adler zeros

of the amplitude [32–34] protected by SU(2)×SU(2) symmetry. The soft-pion theorem implies

zeros of the on-shell amplitude at the two soft-pion points

s1 = s2 = 2M2
π , t1 = u2 = M2

η ′ , u1 = t2 = M2
η . (2.6)

In the past, claims have been made that the a0(980) resonance removes the Adler zeros based on

the explicit inclusion of a scalar resonance propagator [35]. In Fig. 3, we show the result for the

dispersive amplitude fitted to data, evaluated along a line of fixed s = 2M2
π . We encounter zeros in

both the real and imaginary part of the amplitude at positions close to the soft-pion points, but for

slightly smaller values of |t −u|. At the resonance positions

|t −u| ≈ 2M2
a0
−M2

η ′ −M2
η , (2.7)

which are also close but outside the soft-pion points, we observe a large peak in the imaginary part

and another zero in the real part. We conclude that the dispersive representation refutes the argu-

ment [35] that for η ′ → ηππ the low-energy theorem does not result in an Adler zero. Although
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Figure 3: Real and imaginary part of the amplitude along a line of fixed s = 2M2
π . The subtraction constants

of the dispersive representation are fixed by a fit to the BES-III data set. Figure adapted from Ref. [1].

the corrections at the soft-pion points are of O(M2
π/(M

2
η ′ −M2

a0
)), which is not a small quantity, the

zeros of the amplitude survive and are just shifted to smaller values of |t −u|.
So far, we have analyzed experimental Dalitz-plot data sets for η ′ → ηπ+π−. To deduce a

comparably precise prediction for the neutral final state η ′ → ηπ0π0, we have to consider poten-

tially enhanced sources of isospin-symmetry violation. While a correction for phase space alone is

straightforward, we need to construct phase shift input that has all the thresholds in the right places.

We observe that the cusp structure of the decay amplitude for η ′ → ηπ0π0 [10] is very similar to

that of the neutral-pion scalar form factor F0(s) [36]. Thus, we employ arg F0(s) as the input π0π0

S-wave phase shift, see Fig. 4. In the πη case we rely on a simple rescaling to adapt the π±η phase

shift to π0η in such a way as to put all thresholds into the right places.

Our prediction for the η ′ → ηπ0π0 decay spectrum projected on the y direction is shown in

Fig. 4, where the nonanalytic structure of the π+π− cusp is clearly visible. It is based on the
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Figure 4: Left panel: comparison of argF0(s) [36] (solid line) to the isospin-symmetric phase δ0(s) [26]

(dashed line). Figure adapted from Ref. [1]. Right panel: decay spectrum for η ′ → ηπ0π0 integrated

over the variable x and divided by the phase space dΦ̄(x,y), where both are individually normalized. For

comparison, we plot the data sample of Analysis II from the A2 collaboration [9].
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subtraction constants as extracted from the BES-III fit to the η ′ → ηπ+π− channel. As the figure

shows, the predicted spectrum is in very good agreement with the experimental results from A2 [9].

As a further theoretical development, the fitted dispersive parametrization of η ′ → ηππ will

be used as an input in a forthcoming analysis of inelasticity effects in η ′ → 3π [37]. Notice that

the decay η ′ → 3π can proceed via η ′ → ηππ and isospin-breaking rescattering ηπ → ππ (which

can be extracted from analytic continuation of the dispersive amplitude η → 3π [38]) and direct

isospin breaking η ′ → 3π .

3. Quark-mass dependence of ω → 3π

Many studies of complicated observables within lattice QCD are still performed with light

quarks that are heavier than they are in the real world (see e.g. Refs. [39, 40] for reviews). To

extrapolate such simulations to the physical point, additional theoretical input is required. At

low energies, the effective field theory that controls the quark-mass dependence by construction

is ChPT [41–43], which describes the interactions of the pseudoscalar octet (π,K,η). In ChPT

the pion mass is directly related to the light quark mass [44], hence we will refer to the pion-mass

dependence instead. The vast majority of states in QCD are resonances, and to perform chiral ex-

trapolations for these is less straightforward. However, for the ρ in P-wave ππ → ππ scattering we

can derive the pion-mass dependence of the complete pole position by means unitarized versions

of ChPT, such as the inverse amplitude method (IAM) [45–48]. In contrast for the ω , appearing in

3π → 3π scattering of the appropriate quantum numbers, we are not in the position to do the same.

We will mainly discuss the complicated pion-mass dependence of the width of the ω , or the

imaginary part of its pole in the complex plane, in the following; for the pion-mass dependence

of its mass, the corresponding real part, we have to resort to symmetry arguments based on SU(3)

effective Lagrangians [49–51]. We find that SU(3) breaking effects do not significantly affect the

relation between Mρ and Mω , hence we adopt the pion-mass dependence of Mρ(M
2
π) for Mω(M

2
π).

The process ω → 3π gives the by far dominant contribution to the total ω decay width; in this

study we assume the latter to be fully saturated by this dominant decay channel. By integrating the

squared amplitude over phase space we obtain the decay width Γ(ω → 3π)≡ Γω according to

Γω =
1

256π3M3
ω

∫

dsdt |M (s, t,u)|2 . (3.1)

Since the transition ω → 3π is of odd intrinsic parity, the modulus of the amplitude can be decom-

posed into a kinematic prefactor and a scalar function F containing the dynamical information,

|M (s, t,u)|2 = 1

4

[

stu−M2
π

(

M2
ω −M2

π

)2
]

|F (s, t,u)|2 . (3.2)

Due to Bose symmetry only odd partial waves are allowed to contribute to the process. Ne-

glecting discontinuities from F- and higher partial waves allows us to decompose the scalar func-

tion into a sum of single-variable functions with definite isospin I = 1 [12–16, 18]

F (s, t,u) = F1(s)+F1(t)+F1(u) , (3.3)
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Figure 5: Left panel: trajectory of the ρ pole position in the complex s plane for different pion masses. The

colored ellipses mark the one-σ uncertainty regions of the pole position for the respective pion mass. Right

panel: IAM amplitude ππ P-wave scattering phase shift for different values of the pion mass: 0 (blue), 1
2
M̄π

(cyan), M̄π (green), 3
2
M̄π (yellow), 2M̄π (orange), and 5

2
M̄π (red). The error bands result from the uncertainty

of F and l̄. Here M̄π denotes the physical value of the pion mass. Figures taken from Ref. [2].

where F1 possesses only a right-hand cut (see Ref. [12] for a discussion of potential F-wave

contributions). The single-variable functions fulfill the unitarity condition

discF1(s) = 2iθ(s−4M2
π)
[

F1(s)+ F̂1(s)
]

sinδ (s)e−iδ (s) , (3.4)

where the inhomogeneity F̂1 is defined as an angular integral according to

F̂1(s) =
3

2

∫ 1

−1
dzs (1− z2

s )F1

(

t(s,zs)
)

. (3.5)

We treat the final-state ππ rescattering to be elastic, thus it can be described in terms of the

ππ P-wave phase shift δ (s) only. Using the IAM technique to unitarize SU(2) ChPT we construct

a pion-mass-dependent P-wave scattering amplitude [52, 53]. At one loop this amplitude depends

only on three parameters: the pion mass, the pion decay constant in the chiral limit F , and one

linear combination of low-energy constants l̄. Note that both F as well as l̄ are independent of Mπ .

The trajectory of the pole position of the ρ resonance as well as the corresponding ππ scat-

tering phase shift are displayed in Fig. 5. As expected from its quark content, the mass of the ρ

increases if the pion becomes heavier. This behavior can be described to good approximation as

a linear function in M2
π . For heavier pions the slope of the phase shift becomes steeper, while the

whole curve moves to the right (decreasing width and increasing mass of the ρ). This observation

is also reported by various lattice QCD calculations carried out at different pion masses [54–65].

In the low-energy regime at the physical pion mass the phase shift is in perfect agreement with the

Roy analyses of Refs. [26, 66].

We employ a solution of the unitarity relation (3.4) with a single subtraction constant α [12],

F1(s) = Ω(s)

{

α +
s

π

∫ ∞

4M2
π

ds′

s′
F̂1(s

′) sin δ (s′)
|Ω(s′)|(s′− s)

}

. (3.6)

Based on vector-meson-dominance arguments, we treat α as pion-mass independent. As α serves

as an overall normalization, at physical pion masses it is fixed to the decay rate Γω , with the energy

dependence of the amplitude or the Dalitz plot distribution then being a theoretical prediction [12].
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Figure 6: Left panel: pion-mass-dependent decay width for ω → 3π . Γ̄ω and M̄π denote values at the

physical point. Right panel: trajectory of the pion-mass-dependent ω mass and width in the complex-energy

plane of 3π → 3π scattering. Both plots show: kinematics only (black), 2-body dynamics (red), and full

3-body dynamics (blue). The physical point is marked by the black diamond. The error bands are generated

by taking the uncertainties of the IAM phase shift and Mω(M
2
π) into account. Figures taken from Ref. [2].

In order to study the dynamical effects on the decay width we consider three different sce-

narios: first we consider only kinematic effects on the decay width (all pion–pion dynamics are

disregarded, δ (s) = 0, and thus |F (s, t,u)|2 = const.); second we allow for 2-body rescattering ef-

fects (meaning |F (s, t,u)|2 ∝ |Ω(s)+Ω(t)+Ω(u)|2); and third the full 3-body dynamics are taken

into account. A comparison of the different cases is displayed in Fig. 6.

Since the mass of the three pions is increasing faster than the mass of the ω , the ω → 3π width

decreases with increasing pion mass. At 1.96 physical pion masses, the masses of the three pions

exceed the ω mass, thus the decay ω → 3π is no longer allowed and the ω becomes stable with

respect to the considered decay channel (i.e., in QCD in the isospin limit).

The effects of the 2- and 3-body dynamics are strongly weighted by the kinematical prefactor

(3.2), which vanishes at the phase space boundaries in all directions. Since the dynamics are largely

driven by the ρ resonance and the ω → 3π phase space tightens for increasing pion mass, we con-

clude that strong imprints of the ρ will only affect the width close to the chiral limit. Approaching

the physical point the influence of the dynamical effects become weaker. Beyond the physical point

the curves of 2- and 3-body dynamics do not differ strongly from the curve of pure kinematics.

Using this result we can predict a pion-mass-dependent trajectory of the ω pole position in the

complex-energy plane of 3π → 3π scattering Fig. 6, in analogy to the ρ in Fig. 5.

Since dynamical effects in ω → 3π are limited due to the small phase space, we want to

emphasize that the dispersive representation in Eq. (3.6) is valid for general V → 3π decays, with

V denoting an arbitrary isoscalar vector meson, at least to the extent that the elastic approximation

in the ππ rescattering is justifiable; see Ref. [2] for an explicit discussion of φ → 3π .
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