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point and the usage of next-to-leading order chiral perturbation theory to do so. We employ data
at three values of the lattice spacing and pion masses ranging from around 230 MeV to around
450 MeV applying Luescher’s finite volume method to compute the scattering lengths. We find
that leading order chiral perturbation theory is surprisingly close to our data even in the kaon-kaon
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1. Introduction

In this contribution we summarise our calculations of the I = 2,ππ [1], I = 1,KK [2] and I =
3/2,πK [3] s-wave scattering lengths from lattice QCD. We employ a set of gauge configuration
ensembles generated by the European Twisted Mass Collaboration (ETMC) with N f = 2+ 1+ 1
quark flavours [4] encompassing three lattice spacings and pion masses between 230 and 450 MeV,
allowing a controlled extrapolation to the physical point and continuum limit.

2. Lattice and finite volume methodology

We use the twisted mass action, for which the Dirac operator of the light quark doublet reads [5]

Dℓ = DW +m0 + iµℓγ5τ3 , (2.1)

where DW denotes the standard Wilson Dirac operator and µℓ the bare light twisted mass parameter.
Here and below, τ i, i = 1,2,3 are the Pauli matrices acting in flavour space. Dℓ acts on a spinor
χℓ = (u,d)T and, hence, the u (d) quark has twisted mass +µℓ (−µℓ).
For the heavy doublet of charm and strange quarks [6], the Dirac operator is given by

Dh = DW +m0 + iµσ γ5τ1 +µδ τ3 . (2.2)

The bare Wilson quark mass m0 has been tuned to its critical value mcrit [7, 4]. This guarantees
automatic O (a)-improvement [8], which is one of the main advantages of the Wilson twisted mass
formulation of lattice QCD.
The splitting term in the heavy doublet Eq. (2.2) introduces parity and flavour mixing between
strange and charm quarks which would render an analysis involving strange quark contributions
very complicated. For this reason we rely on a mixed-action approach for the strange quark by
using the so-called Osterwalder-Seiler (OS) discretisation [9] with Dirac operator

D±
s = DW +m0 ± iµsγ5 , (2.3)

and bare strange quark mass µs. It was shown in Ref. [9] that O(a)-improvement remains intact
when m0 is set to the same value mcrit as used in the sea sector. For each β -value, we choose a
set of three bare strange quark masses aµ1,2,3

s such as to bracket the physical strange quark mass
indepenently of the light quark mass.
The lattice scale for the ensembles has been determined in Ref. [10] using fπ . Also in Ref. [10]
the non-singlet pseudoscalar renormalisation constant ZP, the inverse of which is the quark mass
renormalisation constant in the twisted-mass approach, has been determined for each lattice spac-
ing.
We are interested in the limit of small scattering momenta for the three systems in question be-
low inelastic threshold. The scattering lengths aI

0 for isospin I can be related in the finite range
expansion to the energy shift δE by an expansion in 1/L following Ref. [11]

δEX =− 4πa0

2µX L3

(
1+ c1

aI
0

L
+ c2

(aI
0)

2

L2 + c3
(aI

0)
3

L3

)
−

8π2(aI
0)

3

2µX L6 rI
f +O(L−7) , (2.4)
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Figure 1: (left) Our data (open symbols) for all three systems in units as given in Eq. (3.1). The results of
our continuum limit and extrapolation to the physical point are shown by the filled symbols while the dashed
line indicates the LO χPT estimate. (right) Our data and final results with the LO χPT estimate subtracted.

with coefficients [11, 12]

c1 =−2.837297 , c2 = 6.375183 , c3 =−8.311951 ,

and where X ∈ {ππ,πK,KK} and thus the µX correspond to the reduced masses of the respective
two boson systems

µππ =
1
2

Mπ µπK =
MπMK

Mπ +MK
µKK =

1
2

MK ,

while rI
f are the effective range parameters.

3. Overview of our results

Before detailing our three computations, we would like to point out that universal leading-order
(LO) χPT is surprisingly close to our data for all three systems when written in the form

µX ·aI
0 =

LO
− 1

4π

(
µX

fX

)2

, (3.1)

where µX are as above and

fππ = fπ fπK = fπ fKK = fK .

It should be noted that one could also employ fπ fK for the πK system which would bring the data
even closer to the LO estimate.
Fig. 1 gives an overview of all of our data for the scattering lengths indicated by the open symbols
in the left panel. The LO χPT estimate of Eq. (3.1) is also shown by the dashed line, while the
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Figure 2: (left) Overview of our data for Mπ aI=2
0 as a function of (Mπ/2 fπ)

2. The solid line indicates the
LO χPT curve while the red empty circle indicates the result at the physical point in the continuum limit.
(right) Difference between our results for Mπ aI=2

0 and the LO χPT estimate. The lines show the NLO piece
from fits of Eq. (4.1) with different Mπ/ fπ cuts. The dark and light grey bands indicate the statistical and
combined statistical and systematic errors, respectively, as given in Eq. (4.2).

final results of our analyses in the continuum limit and at the physical point are given by the filled
symbols. The right panel instead shows the deviations of our data and final results from the LO
estimate, which are seen to be statistically significant for the ππ and πK cases but do not exceed a
few percent even for our heaviest pion masses.

4. I = 2,ππ

In order to extrapolate our data for Mπa0 to the physical point, we employ next-to-leading order
(NLO) continuum χPT. As suggested in Refs. [13, 14], it is convenient to write the expression for
Mπa0 as a function of Mπ/ fπ because then all quantities are dimensionless and no scale input is
needed. This results in [13, 14]

Mπa0 =− M2
π

8π f 2
π

{
1+

M2
π

16π2 f 2
π

[
3ln

M2
π

f 2
π
−1− ℓππ(Λχ = fπ,phys)

]}
(4.1)

with ℓππ related to the Gasser-Leutwyler coefficients ℓ̄i as follows [15]

ℓππ(Λχ) =
8
3
ℓ̄1 +

16
3
ℓ̄2 − ℓ̄3 −4ℓ̄4 +3ln

M2
π,phys

Λ2
χ

.

One can show in Wilson twisted mass χPT that the leading lattice artefacts to Mπa0 are of O(a2M2
π) [16],

such that at NLO, we consistently describe our data with the continuum χPT formula provided
above.
In the expression here and those in the subsequent sections, we formally fix the scale-dependent
LECs at Λχ = f phys

π− . In practice, however, it has proven useful to employ the values of the pion
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decay constant as measured on the lattice for each ensemble with finite size corrections applied.
Doing so has the benefit of giving statistically precise ratios and not requiring scale setting at the
cost of only inducing higher order corrections in the chiral expansion.
We show our data for MπaI=2

0 together the LO χPT estimate in the left panel of Fig. 2. In the right
panel, instead, we have subtracted the LO estimate to clarify the size of corrections beyond the LO.
The NLO pieces from fits of Eq. (4.1) with different cuts in Mπ/ fπ , as indicated by the brackets,
are shown by the solid purple, blue and black lines. Comparing these different fits, we obtain as
our final result

Mπa0 = −0.0442(2)stat(
+4
−0)sys , ℓππ = 3.79(0.61)stat(

+1.34
−0.11)sys , (4.2)

where the first error is statistical only and the second accounts for the different cuts. It turns
out that other systematic errors are much smaller than the statistical uncertainty such that we can
safely ignore them. We would like to point out that after the LO contribution has been subtracted, it
becomes clear that even though our data is rather precise compared to other lattice determinations,
we are only just sensitive enough to determine the NLO corrections and that it is the constraint in
the chiral limit which allows us to quote the very small error on our final result.
In Fig. 3, we compare our result to those of CP-PACS [17], NPLQCD (2006) [13], NPLQCD
(2008) [18], ETM (2013) [19], this work denoted as ETM (2015), Yagi et al. [20], Fu [21] and
PACS-CS [22]. We quote statistical and – where available – systematic uncertainties separately.
For NPLQCD (2008) there is only the combined statistical and systematic uncertainty.
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Figure 3: Comparison of this work (ETM 2015) to other determinations, for references see the main text.

5. I = 1,KK

For the KK and πK systems, we interpolate all of our data to fixed (physical) renormalised strange
quark mass either by requiring M2

K − 1
2 M2

π to take its physical value (henceforth method A) for all
of our ensembles or by defining per-ensemble reference strange quark masses taking into account
lattice artefacts, such that M2

K parametrised in terms of SU(2) χPT at fixed strange quark mass
takes its physical value in the continuum limit extrapolated to the physical point (method B). For
details, see Refs.[2, 3].
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Working at fixed strange quark mass, we attempt to fit the NLO expression for the I = 1,KK
scattering length, given in Refs. [23, 24, 25] as

MKa0 =− M2
K

8π f 2
K

[
1− 16

f 2
K

(
M2

KL′− M2
K

2
L5 +ζ

)]
, (5.1)

where L5 is a low energy constant, L′ is a combination of standard low energy constants and ζ is a
known function of meson masses and chiral logarithms. Using the normalisation of Eq. (3.1), our
data together with the LO χPT prediction is shown in the left panel of Fig. 4. In the right panel,
instead, we subtract the LO prediction and also here it is seen that contributions beyond the LO are
genuinely small.
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Figure 4: (left) Overview of our data for MKaI=1
0 as a function of the reduced mass of the πK system

squared in units of the pion decay constant. The solid line indicates the LO χPT curve while the red empty
circle indicates the result at the physical point in the continuum limit. (right) Deviation of our data and final
result from the LO χPT estimate.

As our strange quark mass is tuned very close to its physical value, our data does not posess suffi-
cient spread in M2

K/ f 2
K to allow for an independent determination of L5 and L′ together with a check

of residual discretisation effects, which appear to be marginally visible. Using valence strange
quark masses far from the physical value to increase the spread in M2

K/ f 2
K instead would poten-

tially lead to unitarity breaking contributions which cannot be neglected, such that we abstained
from this approach.
Instead, we perform an explicit extrapolation to the continuum limit and the physical value of the
renormalised light quark mass in a global fit with the Ansatz

MKa0 = Q0
Pr

PZ
aµℓ+Q1

1
P2

r
+Q2 , (5.2)

where aµℓ is the bare light quark mass in lattice units, Qi are simple fit parameters while Pr and
Pz are restricted by priors for the Sommer scale r0 [26] and the non-singlet pseudoscalar renorm-
lisation constant ZP, respectively. Q1 accounts for lattice artefacts which are clearly visible when
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Figure 5: Chiral and continuum extrapolation of MKaI=1
0 as a function of the renormalised light quark mass

in units of the Sommer scale r0 [26] at fixed (physical) strange quark mass. (left) and (right) differ in how
the strange quark mass is fixed to its physical value as described above Eq. (5.1).

the data is parametrised in terms of the light quark mass, as shown in Fig. 5. There, the left panel
displays the data interpolated to the value of the strange quark mass fixed via method A and the
right panel when method B is used instead. Our final result reads

MKa0 =−0.385(16)stat(
+0
−12)ms(

+0
−5)ZP(4)r f , (5.3)

where the first error is statistical only, the second accounts for the two ways of interpolating the
data to the physical strange quark mass, the third accounts for two different determinations of the
renormalisation constant while the last one indicates the effect of neglecting higher order terms in
the calculation of the scattering length via the Lüscher method.
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6



P
o
S
(
C
D
2
0
1
8
)
0
7
1

Lattice QCD meson-meson scattering lengths B. Kostrzewa

We can compare this this to the only other two lattice computations of Refs. [14, 22] in Fig. 6 where
it becomes clear that lattice artefacts should not be neglected, although we can confirm that when
parametrsied via the continuum χPT form of Eq. (5.1), substantial cancellations of lattice artefacts
seem to occur, as claimed in Ref.[25].

6. I = 3/2,πK scattering

The NLO χPT expression for µπKaI=3/2
0 can be derived from Refs. [24, 27] giving

µπKaI=3/2
0 =− µ2

πK
4π f 2

π

[
1− 32Mπ MK

f 2
π

LπK(Λχ)+
16M2

π
f 2
π

L5(Λχ)− 1
16π2 f 2

π
χ3/2

NLO(Λχ ,Mπ ,MK ,Mη)
]
+ c · f (a2) ,

(6.1)
where we add the term c · f (a2) to account for possible lattice artefacts as, unlike in the ππ and KK
cases, these might enter at NLO. L5 is the same as in Eq. (5.1) while LπK is a different combination
of LECs and χ3/2

NLO is a function of meson masses and chiral logarithms.

In Fig. 7 we show our data for µπKaI=3/2
0 together with the LO χPT prediction in the left panel,

while in the right panel we again subtract this from our data and final result, the latter of which is
shown by the empty red circle. Again it is clear that the deviation from LO is small, although here
it seems to be consistent across our set of ensembles.
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Figure 7: (left) Overview of our data for µπKaI=3/2
0 as a function of the reduced mass of the πK system

squared in units of the pion decay constant squared. The solid line indicates the LO χPT curve while the
red empty circle indicates the result at the physical point in the continuum limit. (right) Our data and final
result with the LO χPT estimate subtracted.

Unlike in the KK case, we have a sufficient lever to determine LπK , although we are unable to
determine L5 at the same time. We constrain the latter with a prior based on the value determined
in Ref. [28] and translated to our renormalisation scale. We are also unable to get a statistically
significant result for fit parameter c employing different kinds of functions to describe potential
lattice artefacts, suggesting that they are negligible within our statistical uncertainties.
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ChPT presented at this conference
[33].

Our final result reads

µπKaI=3/2
0 =−0.05937(82)stat(139)fr(64)tp(9)χPT

LπK = 0.00379(15)stat(19)fr(12)tp(1)χPT ,
(6.2)

where the first error is purely statistical and the second is an estimate of the systematic error due
to fit range choice in the determination of the interacting energy. The third is the systematic error
stemming from two different ways to account for intermediate state contributions to the interacting
energy, see Ref. [3] for details. Finally, the last error gives the difference between fitting Eq. (6.1)
directly and employing the so-called Gamma-method [32].
We close this section by comparing our determination of aI=3/2

0 in units of Mπ and the results of
[29, 30, 31, 22, 32, 33] in Fig. 8. The preliminary result of [33] has also been presented at this
conference and we thank the authors for sharing the value and an estimate of the uncertainty. The
comparison shows that five out of seven determinations are fully compatible with each other, while
the results of Refs. [31, 30] are somewhat high and low respectively. This may be explained by
lattice artefacts as both studies employ a single lattice spacing, although the latter is at the physical
pion mass.

7. Conlusions and Outlook

We have presented determinations of the s-wave scattering lengths at maximal isospin for the ππ ,
KK and πK systems from lattice QCD, for the first time employing multiple lattice spacings and
a wide range of pion masses throughout. We confirm that lattice artefacts are strongly suppressed
when continuum χPT is used to extrapolate to the physical point. At the same time, however, it
is clear that the corrections beyond LO are very small and that even higher statistical precision is
necessary to really constrain the values of all LECs. As an outlook, it would be interesting to refine
our analysis procedure by performing a global fit of all three systems, perhaps even combined with
an analysis of meson masses and decay constants. A further refinement would be obtained with the
availability of configurations directly at the physical point.
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