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The motivation to study the interactions of pions and kaons is due to the fact that, being
the lightest mesons, stable under strong interactions, they appear as final products of almost all
hadronic processes. In addition, they are the Goldstone bosons of the spontaneous chiral symme-
try breaking of Quantum Chromodynamics (QCD) and a precise description of their interactions
provides a test of that symmetry breaking pattern. Moreover most of the other light meson reso-
nances appear in the scattering of pions and kaons, particularly the most controversial ones like the
σ/ f0(500), κ/K∗0 (700) and the rest of light scalar mesons. However, data on meson-meson scat-
tering is obtained indirectly from meson-nucleon to meson-meson nucleon experiments performed
in the 70’s and 80’s. The extraction of these indirect data often involves the use of models, approx-
imations and extrapolations that produce large systematic uncertainties leading to the existence of
different and often conflicting data sets. Nevertheless, a precise and consistent data amplitude de-
scription can be obtained by means of dispersion relations. These are integral relations, which are
a consequence of causality and crossing symmetry, that provide rigorous and model independent
constraints on amplitudes.

In this contribution we will briefly review our recent results [1] on a dispersive analysis of
ππ→ KK̄ scattering data. This is relevant by itself, as it yields an important contribution to rescat-
tering effects in many hadronic processes, but also because, being the crossed channel of πK scat-
tering, it becomes a relevant input in the most rigorous dispersive determinations of πK scattering
amplitudes [2, 3] and the controversial κ/K∗0 (700) resonance. Dispersive studies of ππ → KK̄
and its relation to πK → πK scattering were first performed in the seventies [4, 5, 6, 7]. It was
soon realized that combining fixed-t and hyperbolic dispersion relations (HDR) for partial waves
[8] was best suited to study the physical regions of both channels simultaneously [5, 7]. Unfor-
tunately, data was scarce and these analyses only allowed for crude checks of low-energy scalar
partial waves, mostly for threshold parameters and the non-physical region between the two-pion
and the two-kaon thresholds. Better experimental results were obtained in the early eighties [9, 10].
Dispersive analysis were carried out for threshold parameters and the unphysical region [11], but
no full dispersive analysis was carried out in the physical region until now, particularly due to the
low applicability range of the simplest su = b hyperbolae used in those works, which we have
extended to the general (s−a)(u−a) = b case for ππ → KK̄.

Our work follows closely the same approach used in a series of works done by the Madrid-
Krakow group for the analysis of ππ scattering data with Forward Dispersion Relations (FDR)
[12, 13] or with Roy equations. The latter, derived in [14], are partial-wave dispersion relations for
ππ scattering, recently applied to analyze data in [15, 16, 17]. The same approach was recently
followed by the present two authors for a FDR analysis of πK scattering data [18] that will provide
the necessary input for the crossed channel here. Alternatively one can also find solutions of Roy
equations in the elastic region of S and P waves given data on other waves and higher energies
[19, 20]. The results of both methods are quite consistent.

Thus, following the Madrid-Krakow approach we first obtain fits to scattering data without
any dispersive constraint providing realistic estimates of systematic uncertainties. These are called
Unconstrained Fits to Data (UFD) and we try to use particularly simple parameterizations so that
they can be easily used later both by the theoretical and experimental communities. The parame-
terizations are written in terms of phases, modules and inelasticities up to a maximum energy from
where we use Regge and Veneziano parameterizations of high energy data when they exist, or use
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factorization to describe channels where data does not exist. In a second step we check the consis-
tency within uncertainties of these data parameterizations. In general we find that the agreement
between the input and the dispersive output is not satisfactory and that sizable inconsistencies ap-
pear in certain partial waves or energy regions. We then use the dispersion relations as constraints
for the fits, by minimizing simultaneously the χ2 of the fits and the distance between the input and
output in the integral equations. The result are sets of Constrained Fits to Data (CFD) that satisfy
the dispersion relations within uncertainties while still describing the data. Actually, the deviations
from the data are usually within errors or a couple of standard deviations in some regions. These
CFD provide a rather simple but consistent parameterizations of meson-meson amplitudes.

Let us now comment briefly on the dispersion relations we use for ππ → KK̄ and later on we
will describe the UFD and CFD sets.

1. Partial-wave Hyperbolic Dispersion Relations

The ππ → KK̄ scattering amplitude GI(t,s,u), where I = 0,1 is the isospin and s, t,u are the
usual Mandelstamm variables for the πK → πK process, actually depends only on two variables
due to the constraint s+ t + u = 2(m2

K +m2
π). Dispersion relations are obtained from applying

Cauchy Theorem using the analyticity structure of the amplitude when considered as a function of
a single complex variable. Generically, amplitudes have a right cut from threshold to infinity and
a left cut due to thresholds in crossed channels. Unfortunately, the simplest dispersion relations
obtained by fixing t can be shown to have very limited applicability range that does not reach the
physical region of ππ→ KK̄. The applicability region is larger when using Hyperbolic Dispersion
Relations along the hyperbolas (s−a)(u−a) = b [8, 21]. One of the relevant aspects of our recent
work is that we have derived the dispersion relations for ππ → KK̄ in the a 6= 0 case and selected
the value of a which maximizes the applicability region for this reaction.

In contrast to the fixed-t dispersion relations, the use of crossing on hyperbolic dispersion
relations couple the ππ → KK̄ amplitudes to those of πK scattering. Actually it is convenient
to define the s→ u symmetric and antisymmetric πK amplitudes F+(s, t,u) = G0(t,s,u)/

√
6 and

F−(s, t,u) = G1(t,s,u)/2. Then HDR couple F+ with G0 and F− with G1. For brevity we do
not provide the integral expressions since they can be found in [1] explained in full detail. It is
also worth noticing that in order to ensure the convergence of the integrals we have to make one
subtraction to the F+ dispersion relations, which therefore depends on a subtraction constant that
basically corresponds to the a+0 scattering length of πK scattering.

Once these hyperbolic dispersion relations are obtained it is relevant to project them into partial
waves, since these are the ones we directly fit to data. For this one has to expand the amplitudes
in partial waves inside the integrals and then project the global partial wave of each particular
dispersion relation. As an example we provide here the so-called Roy-Steiner dispersion relation
for ππ → KK̄ in the isospin I = 0 angular momentum 0 partial wave:

g0
0(t) =

√
3

2
m+a+0 +

t
π

∫
∞

4m2
π

Img0
0(t
′)

t ′(t ′− t)
dt ′ (1.1)

+
t
π

∑
`≥2

∫
∞

4m2
π

dt ′

t ′
G0

0,2`−2(t, t
′)Img0

2`−2(t
′)+

1
π

∑
`

∫
∞

m2
+

ds′G+
0,`(t,s

′)Im f+` (s′)
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≡ ∆
0
0(t)+

t
π

∫
∞

4m2
π

dt ′

t ′
Img0

0(t)
t ′− t

, (1.2)

where gI
`(t) and f I

` (t) are the partial waves of ππ → KK̄ and πK→ πK, respectively. In addition
the GI,±

`,`′ are integral kernels that contain factors from kinematics, crossing, Legendre polynomials,
subtractions, etc... whose expressions can be found in [1]. Note they carry a dependence in a that
we will use to maximize the applicability region. In the final step above we have defined a ∆0

0
function that contains the whole left hand cut contribution, the subtraction terms and right-hand
cuts from higher partial waves, but does not depend on g0

0 itself.
Note that some of these integrals extend to the "unphysical" region of ππ→ KK̄, i.e. between

the two-pion and the two-kaon thresholds, where data do not exist and therefore we cannot get the
amplitude there from fits. However, Watson’s Theorem implies that the phase of the amplitude in
that region is the same as the phase shift for elastic ππ scattering with the same quantum numbers.
Thus we write φ

It
` (t) = δ

It
`,ππ→ππ

(t) and we take the latter from our previous dispersive study in
[16]. Then, the whole amplitude in that region can be determined by using the Mushkelishvili-
Omnés approach [22, 23], by defining and Omnés function

Ω
0
0(t) = exp

(
t
π

∫ tm

4m2
π

φ 0
0 (t
′)dt ′

t ′(t ′− t)

)
, (1.3)

where tM is a matching point above the KK̄ threshold. The Omnés function can be used to remove
the phase (and the cut) from the two-pion threshold up to tm. Then one can write another dispersion
relation for F0

0 (t) = [g0
0(t)−∆0

0(t)]/Ω0
0(t) and arrive at:

g0
0(t)=∆

0
0(t)+

tΩ0
0(t)

tm− t

[
α +

t
π

∫ tm

4m2
π

dt ′
(tm− t ′)∆0

0(t
′)sinφ 0

0 (t
′)

Ω0
0,R(t ′)t ′2(t ′− t)

+
t
π

∫
∞

tm
dt ′

(tm− t ′)|g0
0(t
′)|sinφ 0

0 (t
′)

Ω0
0,R(t ′)t ′2(t ′− t)

]
.

This is the kind of hyperbolic dispersion relations that we use in our work. This example has one
subtraction for the Mushkelishvili-Omnés method, but for the P and D waves no subtractions are
needed. For a more detailed derivation for all waves we refer the reader to [1].

The applicability region of these partial-wave hyperbolic dispersion relation is limited by the
requirement that the arguments of the amplitudes F and G should not enter the so-called double
spectral region where the imaginary parts would become imaginary. In addition, the convergence
of the partial-wave expansion requires that the variables should lie inside the so-called Lehmann
ellipse [24]. In [1] we have explicitly shown that by taking a = −10.9m2

π , we can apply these
relations to ππ → KK̄ up to t ≤ 2.19GeV2. Namely, we can study the physical region from KK̄
threshold ' 0.992GeV up to ' 1.47GeV. In contrast, the usual HDR with a = 0 projected into
partial waves are only valid up to ' 1.3,GeV. Thus, with our choice of a, the applicability of the
dispersive approach in the physical region has been extended by 67% in terms of t.

2. Checks of Unconstrained Fits to Data

As already emphasized, we have provided a set of Unconstrained Fits to Data in terms of
simple parameterizations that can be found in [1]. These include a realistic estimate of systematic
uncertainties. We have performed fits to the (I, `) = (0,0),(1,1) and (0,2) partial-wave data on
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phases and moduli obtained indirectly from kaon-nucleon to kaon-pion-nucleon. These experi-
ments were performed at the Brookhaven National Laboratory, whose three works [10, 25, 26] we
will call Brookhaven-I, Brookhaven-II and Brookhaven-III, respectively, as well as at the Argonne
National Laboratory [9]. Higher wave contributions, although negligible, have been estimated by
parameterizing the ` = 3,4 Breit-Wigner resonances that appear below 2 GeV. Above 2 GeV we
have used Regge Veneziano parameterizations obtained from factorization of KN, ππ , πN and NN
high energy scattering data (see [27, 18, 1] for details), the contribution is typically small.

In order to quantify the consistency of the fits, we first define a “distance-square”

d2 =
1
N

N

∑
i=1

(
di

∆di

)2

, (2.1)

for each dispersion relation. Here di is the difference between the “input” and “output” of each
dispersion relation at the energy

√
ti. We evaluate this distances at around 30 points over the

applicability region. Note the similarity with a χ2 function, so that d2≤ 1 signals a good fulfillment
of the dispersive constraints.

The partial wave that comes out more consistent already for the UFD set is the I, `= 1,1. The
UFD fits are shown in the top row of Fig.1. Note that below KK̄ threshold we only have data for
the phase from ππ scattering and we use its parameterization in [16]. The resulting d2 = 1.1 for
the UFD fit and this consistency is pretty homogeneous throughout the applicability region, except
maybe very close to threshold where the input and dispersive output are separated by slightly more
than one standard deviation.

The UFD fits for the isospin 0 D-wave, are shown in Figure 2. The most relevant remark is that
our parameterization has the correct behavior near KK̄ threshold dictated by Watson’s Theorem,
and also displays a dip due to the presence of the f2(1810) in contrast to the model used by the
Brookhaven-II analysis [25]. The overall agreement d2 = 1.6, shows some inconsistency coming
mostly from the threshold region. Therefore there is room for improvement by using the dispersion
relation as constraints.

The most interesting fits are those of the scalar-isoscalar wave, which are show in Fig.3, since
there are clearly two inconsistent sets of data for the modulus. We have fit them both, calling
them UFDB and UFDC (see [1] for details). In addition there are some data for the phase at low
energies that we discard because they do not satisfy Watson’s Theorem. We thus use the same
phase parameterization for both UFD sets. Interestingly, both sets show large inconsistencies with
the dispersive representation, d2 = 5.6 and d2 = 2.7, respectively. In this case that inconsistency
is not only due to the threshold region, particularly in the UFDB case. Thus, here there is not just
room, but a need for improvement. This is achieved by using the dispersion relations as constraints
for our fits.

3. Constrained Fits to Data

In order to impose the dispersion relations as constraints we have minimized the following
function:

W 2
1 d2

gI
`
+

W 2
2

N

N

∑
k

(
|gI

`|exp,k−|gI
`(sk)|

δ |gI
`|exp,k

)2

+
W 2

3
N′

N′

∑
k

(
(φ I

` )exp,k−φ I
` (sk)

δ (φ I
` )exp,k

)2

, (3.1)
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Figure 1: The continuous line and the uncertainty band corresponds to the CFD, the dashed line to the
UFD. Top: Modulus and phase of the g1

1(t) ππ → KK̄ partial wave. The white circles and squares come
from the ππ scattering experiments of Protopopescu et al. [28] and Estabrooks et al.[29], respectively.
Bottom Dispersive output for the modulus of the g1

1(t) ππ → KK̄ partial wave obtained from the CFD set,
including the unphysical region below KK̄ threshold.

where |gI
`|exp,k,(φ

I
` )exp,k is the k-th data point for the modulus and the phase, respectively, whereas

δ |gI
`|exp,k,δ (φ

I
` )exp,k stand for their corresponding errors. The weights W 2

i roughly take into account
the degrees of freedom needed to parameterize the modulus and the phase. In other words, we are
minimizing the χ2 of the data together with some penalty functions for the distance between the
input and the output of the dispersion relations. The aim is to get both the χ2 and the d2 close or
smaller than one uniformly over the dispersion relation applicability region. Hence, the resulting
Constrained Fits to Data (CFD) are consistent with the dispersive representation while describing
fairly well the existing data.

In the top row of Fig.1 we show the CFD g1
1 versus the UFD. The CFD curves are barely

distinguishable from the the UFD, since the latter was already very consistent with the dispersion
relations. In the Bottom panel we show the CFD dispersive prediction for the unphysical region,
where the ρ(770) peak is clearly visible. Recall that the phase in that region is input from ππ

scattering. As seen in the top left panel of Fig. 4 the consistency of the hyperbolic dispersion
relation for this channel is remarkable throughout the applicability region, with a total d2 = 0.6.

In Fig.2 we show the modulus and phase of the g0
2 wave in the physical region compared to
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Figure 2: Left: Comparison between the UFD and CFD g0
2 phases obtained with a model including a

f2(1810) resonance and the one obtained with the Brookhaven model without it, using a flat background.
Right: The continuous line is our final CFD parameterization of the data on the modulus of ĝ0

2(t) from the
Brookhaven-II analysis [25]. The gray band stands for the uncertainty from the CFD parameters.The dashed
line is the UFD parameterization. The difference between the UFD and CFD parameterization near threshold
is imperceptible due to the q5 barrier factor of the angular momentum.

the UFD. The difference between them is almost unnoticeable to the eye, except maybe on the
phase. There is however, a sizable improvement on the consistency of the g0

2 dispersion relation, as
shown in the top right panel of Fig.4, which is rather good with a d2 = 1.1 down from 1.6 from the
UFD. Most of the improvement in d2 comes from threshold. Unfortunately, this relevant difference
between CFD and UFD at threshold is masked by the kinematic q5 factor in Fig.4.

Finally, in Fig.3 we compare the UFD and CFD parameterizations of the g0
0 data. Recall that

there were two incompatible fits UFDB and UFDC to the modulus with a common UFD phase.
Their constrained counterparts suffer some deviations from the data at the 1-σ level for the phase
around 1.1 to 1.2 GeV. In addition, the CFDB, which was the one whose UFD was less consistent
with dispersion theory, now reaches some 2-σ deviations with respect to the UFDB in the modulus
in the 1.05 to 1.5 GeV region. However, it can be noticed that once the dispersion relations are
used as a constraint both the UFDB and UFDC are equally consistent, with a fairly good consis-
tency within uncertainties, except in the threshold region. Both them have a similar d2 = 1.4. We
attribute the inconsistency in the threshold region (which also occurs for other waves, although to a
lesser extent) mainly to the existence of isospin violation, since our formalism is isospin invariant.
This effect is probably enhanced by the presence of the f0(980) resonance near threshold in the
scalar-isoscalar wave. The UFDB fit is also more consistent with the favored "dip" solution of the
dispersive analyses of ππ scattering [16]. For this reason we think the CFDB is slightly favored
and should not be discarded as it usually is in the literature.

4. Summary

In this contribution we have presented a brief account of our recent work [1]. First we have
reviewed the derivation of partial-wave hyperbolic dispersion relations and how to maximize their

6
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1- differences between

UFD and CFD phase

2- differences between

UFDB and CFDB modulus

Figure 3: Comparison between the UFD and CFD parameterizations for g0
0(t). The bands cover the uncer-

tainties of the CFD solutions. Upper panel: Modulus of the scalar-isoscalar ππ→KK̄ scattering. The dotted
line represents the CFD combined fit while the continuous line represents the CFD fit to the Brookhaven-II
data only. The only significant change is in the 1.25 to 1.45 GeV between UFDB to CFDB. Lower panel:
Scalar-isoscalar phase for ππ → KK̄ scattering. Note that the UFD, CFDB and CFDC phases are almost
indistinguishable.

applicability region, which then extends up to 1.47 GeV. Next we have obtained fits to ππ → KK̄
data up to 2 GeV by means of simple parameterizations including careful estimates of their sys-
tematic uncertainties. Thus, we have shown how these data show sizable inconsistencies with the
constraints arising from hyperbolic dispersion relations. In a final step we have used the dispersive
representation as a constraint on the data fits. Our main result is a description of data by means of
simple parameterizations, consistent with dispersion relations up to 1.47 GeV, that we hope could
be useful for further experimental and theoretical studies.
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