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1. Introduction

The calculation of electro-weak matrix elements of QCD-unstable hadronic states has been of
long-standing interest to lattice QCD. Calculations in lattice QCD are performed in Euclidean, dis-
cretized space-time and in a finite volume box of size L3×T . Within this setup, S-matrix elements
are not directly accessible from lattice n-point correlation functions. Indeed, Maiani and Testa’s
no-go theorem [1] stated early on, that inescapable final state interactions of multi-hadron states in
finite volume prevent a straight-forward interpretation of matrix elements from the lattice in terms
of continuum and infinite-volume amplitudes.
This issue of proper normalization of lattice correlation functions during conversion to infinite vol-
ume has been addressed for the case of the K to ππ transition in the pioneering work by Lellouch
and Lüscher [2], based on the Lüscher quantization condition [3] for 2-hadron states in finite vol-
ume and the mapping of the finite-volume lattice spectrum to the elastic scattering amplitude. More
recently, Briceño, Hansen and Walker-Loud (BHWL) generalized the method for these 1→ 2 tran-
sitions to arbitrary current insertions between the single- and two-hadron initial and final state, with
arbitrary momentum transfer, as well as fields with arbitrary spin [4, 5]. A prototype calculation
for the πγ → ππ transition was presented in [6, 7].
In this contribution we present our calculation of the pion-photo-transition amplitude at so far light-
est pion mass of 317MeV, We focus in particular on the ρ-resonance region to extract ρ −π − γ

coupling and the photoproduction cross-section. The further implementation of the BHWL for-
malism opens the exciting prospect to study more complicated electro-weak matrix elements for
resonant transitions, such as for nucleon-pion and nucleon-kaon.

2. Resonant pion-photoproducion process

The pion-photo production amplitude across the ρ-resonance region is the most straightfor-
ward example to start with and we give a pictorial representation in Fig. 1. In continuum and

π

ρ

π

π γ

Vgρππ

Figure 1: Diagram representation for resonant photoproduction with gρππ coupling (left vertex)
and photo-transition amplitude.

infinite volume QCD, the decomposition of the matrix element is governed by Lorentz symmetry
and given by

〈ππ |Jµ(0)|π〉= 2iVπγ→ππ(q2,s)
mπ

ε
νµαβ

εν(P,m)(pπ)α Pβ . (2.1)

P denotes the total 4-momentum of the final 2-pion state, pπ that of the initial single-pion state,
√

s
the invariant mass and ε the polarization 4-vector for the ππ P-wave state 〈l = 1, m |.
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Splitting off the kinematic factors introduces the photo-transition amplitude Vπγ→ππ depend-
ing on invariant mass and photon momentum transfer q2 = (P− pπ)

2. Given the normalization
with inverse pion mass chosen in (2.1) and the normalization of single- and 2-pion states 1 , the
amplitude Vπγ→ππ has units of MeV−1.

The residue of the elastic ππ isospin-1 scattering amplitude Tππ→ππ at the ρ resonance pole
sP ≈ m2

R + imR ΓR defines the coupling Gρππ : in the vicinity of sP the scattering amplitude is given
by

Tππ→ππ =
16π
√

s
k

1
cot(δ (s))− i

∼
s→sP

G2
ρππ

sP− s
(2.2)

with ππ center-of-mass momentum k and elastic scattering phase shift δ (s).

The photo-production amplitude has a pole at the ρ resonance as well. Moreover, its complex
phase is determined by the final state interaction of the 2 pions, i.e. by the ππ scattering phase shift,
according to Watsons’s Theorem. Thus, factoring out the pole and observing the phase Vπγ→ππ can
be written in terms of the form factor F(q2,s) in Eq. (2.3),

Vπγ→ππ(q2,s) =

√
16π

kΓ(s)
F(q2,s)

cot(δ (s))− i
∼

s→sP

Gρππ Gρπγ

sP− s
. (2.3)

3. Biceño-Hansen-Walker-Loud formalism

The calculation of the transition amplitude for the process πγ∗→ ρ requires a matrix element
with the ρ as final state. By virtue of decay to two pions2 the ρ is QCD-unstable and the nor-
malization of the matrix elements obtained from lattice QCD in finite volume requires the proper
residual of the fully dressed 2-pion propagator arising from the infinite sequence of elastic rescat-
tering, which is unavoidable in the finite lattice volume. The corresponding finite to infinite volume
conversion has been introduced for the K→ ππ process in [2], has recently been generalized as the
Briceño-Hansen-Walker-Loud (BHWL) formalism [4, 5] and accommodates the case considered
here, which was first applied in [6, 7]. The BHWL work-flow we follow is captured in the chart 2:
the finite-volume spectrum in the ρ channel is determined from the lattice calculation and converted
into the scattering amplitude at the discrete finite-volume energy levels via the Lüscher quantiza-
tion condition. Together with the finite-volume 1→ 2 matrix elements input, the BHWL formalism
gives the corresponding infinite-volume transition amplitude evaluated at the lattice energy levels,
which are subsequently analytically continued to the ρ resonance pole. The pole location we obtain
from describing our scattering amplitude data with the Breit-Wigner form and variations thereof.

1The normalization is chosen as follows:

〈π(p) |π(q)〉 = 2E(~p)(2π)3
δ
(3)(~p−~q)

〈ππ,P,~kCM |ππ,P′,~k′CM〉 = 2E1 2E2 (2π)3
δ
(3)(~k−~k′)(2π)3

δ
(3)(~P−~k−~P′+~k′)

2Below the KK̄ and 4π threshold.
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FV spectrum

FV 1 → 2
matrix elements

Lüscher
analysis

analytical
continuation

BHWL
analysis

analytical
continuation

partial wave
amplitudes

transition
amplitudes

resonance
poles

resonance
form factors

Figure 2: Workflow chart for the Briceño-Hansen-Walker-Loud formalism [4, 5]

4. Elastic ππ isospin-1 p−wave phase-shift

To extract the lattice spectrum in the ρ-channel I (JP) = 1(1−) we solve the generalized eigen-
value problem (GEVP) [8, 9] for correlation matrices built from a variational basis of single hadron
( quark-bilinear, or ρ-type) and two-hadron ( ππ-type ) interpolating fields. The matrices of 2-point
correlation functions are considered per ππ center-of-mass momentum and projected to irreducible
representations (irreps) of the lattice, finite-volume rotational symmetry group Oh and subgroups
thereof.

q̄q ππ

q̄q

d̄Γiu d̄Γiu

d̄γ5u

ūγ5u

d̄Γiu

ππ

d̄γ5u

ūγ5u

d̄Γiu

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

Figure 3: Schematic representation of diagrams
arising from Wick contractions

~P [2π

L ] LG(~P) Irrep Λ `

(0,0,0) Oh T−1 1−,3−, . . .
(0,0,1) C4v A−2 1−,3−, . . .
(0,0,1) C4v E− 1−,3−, . . .
(0,1,1) C2v B−1 1−,3−, . . .
(0,1,1) C2v B−2 1−,3−, . . .
(0,1,1) C2v B−3 1−,3−, . . .
(1,1,1) C3v A−2 1−,3−, . . .
(1,1,1) C3v E− 1−,3−, . . .

Table 1: Lattice rotational symmetric
groups, irreps and angular momentum con-
tent considered in this work

The pertinent prototypes of Wick contractions are shown in the left-hand side figure above.
The right-hand side table lists the total ππ momentum vectors ~P, the corresponding residual rota-
tional symmetry or little groups LG(~P) together with exploited irreps considered in our calculation.
The details of construction of Wick diagrams, projection, GEVP analysis and conversion to scat-
tering amplitude for our study are given in [10]. The parameters for our lattice calculation are
collected in table 2; the gauge field ensemble (“C13”) was provided by Kostas Orginos et al. and
generated using XSEDE resources.

We summarize our results (in lattice units ) for the ππ elastic phase shift and model interpola-
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Label a/ fm L/ fm mπ/MeV mK/MeV mπ L
C13 0.11403(77) 3.649(25) ≈ 317 ≈ 530 5.865(32)

Table 2: Parameters for ensemble C13 used during our study.

tion in the left-hand side figure and the table below.

0.42 0.48 0.54 0.60

a
√
s

0

45

90

135

180

δ 1
[◦

]

χ2
I

dof = 7.42
13

χ2
II

dof = 5.48
12

BW I

BW II

BWI BWII
χ2

dof 0.571 0.457

amρ 0.4599(19)(13) 0.4600(18)(13)

gρππ 5.76(16)(12) 5.79(16)(12)

(ar0)
2 −−− 8.6(8.0)(1.2)

The 15 kinematic points in invariant ππ mass
√

s are fitted to Breit-Wigner models denoted “BWI”
and “BWII”

BWI ΓI(s) =
g2

ρππ

6π

k3

s
(4.1)

BWII ΓII(s) =
g2

ρππ

6π

k3

s
1+(kRr0)

2

1+(kr0)2 (4.2)

BWII amends the standard BWI form by a Blatt-Weisskopf barrier factor with radius r0. The results
for the fit parameters are given in the table above. With BWII we do not detect significant deviations
from the simple BWI form. Yet in the BHWL analysis to follow, we keep both parametrizations to
check for systematic uncertainties originating from the choice of interpolation model.

5. Photoproduction amplitude

The finite-volume transition matrix element 〈π,~pπ | Jµ(0, ~Q) | n,~P,Λ,r〉 is determined for the
nth energy level with a given total momentum ~P of the ππ system, which is projected to row r
within irrep Λ. We obtained it from 3-point functions using the variationally optimized interpo-
lators, that result from the GEVP analysis, with the insertion of the multiplicatively renormalized
([11]) electromagnetic current Jµ = ZV

(2
3 ūγµ u− 1

3 d̄ γµ d
)

between initial 2-pion and final single-
pion state interpolator as given in Eq. (5.1)

Ω
~p,~P,Λ,r
3,µ,n (tπ , tJ, tππ) = 〈O~pπ

π (tπ) Jµ(tJ,~q) On,~P,Λ,r(tππ ,~P)†〉 . (5.1)

For large time separations between final / initial state excitation and current insertion tππ−tJ / tπ−tJ
the ensuing ratio (5.2) of 3-point and 2-point functions is proportional to the desired finite-volume

4



P
o
S
(
C
D
2
0
1
8
)
0
8
0

πγ → ρ → ππ Marcus Petschlies

(a)
Jµ

d̄Γiud̄γ5u

Jµ
(b)

d̄γ5u

ūγ5ud̄γ5u

(c) Jµ

d̄Γiud̄γ5u

(d) Jµ
ūγ5u

d̄γ5u

d̄γ5u

(e) Jµ
ūγ5u

d̄γ5u

d̄γ5u

(f) Jµ
ūγ5u

d̄γ5u

d̄γ5u

Figure 4: Diagrams for the 3-point functions from quark-bilinear and 2-hadron interpolators with
vector current insertion. Partially transparent, quark-disconnected diagrams are neglected.

matrix element up to excited state contamination.

R~p,~P,Λ,r
µ,n (tπ , tJ, tππ) =

Ω
~p,~P,Λ,r
3,µ,n (tπ , tJ, tππ) Ω

~p,~P,Λ,r
3,µ,n (tππ , tππ + tπ − tJ, tπ)

C2pt
π (tπ − tππ)C2pt

n,~P,Λ,r
(tπ − tππ)

tππ/π−tJ large
∝ |〈π,~pπ | Jµ(0, ~Q = ~pπ −~P) | n,~P,Λ,r〉|2FV (5.2)

We depict the prototype Wick contractions used to build the 3-point functions in Fig. 4. The
partially transparent top left and center diagrams are quark-disconnected with the vector current
loop. The contribution of those diagrams are statistically insignificant for the signal at our present
level of accuracy and neglected in our calculation. An exemplary subset of ratios for total momenta
|~P|=

√
32π/L and |~P|= 2π/L for several irreps together with the fits to a constant is shown in the 3

left-hand columns of Fig. 5: the three columns correspond to source-sink time separation tπ−tππ =

8a, 10a, 12a. The right-most column shows the stability of the constant fit under variation of data
selected into the fit from the set of source-sink separations and number of data points around the
center tJ = (tπ − tππ)/2.

Following the BHWL formalism in Fig. 2, we convert the finite-volume matrix element to its
infinite-volume counterpart at the same kinematic parameters using the Lellouch-Lüscher factor

|〈π,~pπ |Jµ(0)|s,q2;~P, Λ, r〉IV |2
|〈π,~p|Jµ(0, ~Q)|n,~P, Λ, r〉FV |2

=
1

2E
~P,Λ
n

16π

√
s
~P,Λ
n

k
~P,Λ
n

(
∂δ

∂E
+

∂φ
~P,Λ

∂E

)∣∣∣∣
E=E

~P,Λ
n

(5.3)

In eq. (5.3) δ denotes the ππ elastic phase shift, k
~P,Λ
n the ππ center of mass relative momentum

and φ
~P,Λ is an analytically known function from the Lüscher quantization condition. We show the

numerical values for the Lellouch-Lüscher (LL) factor as a function of ππ center of mass energy for
our setup in Fig. 6 for all ππ total momenta and irreps used in our calculation. Since the LL factor
depends on the interpolation of phase shift data, we show the values for both BWI (blue solid line)
and BWII (red dashed line). To appreciate the impact of the scattering phase derivative on the LL
factor, in black solid line we give the contribution from φ

~P,Λ in eq. (5.3) alone. The left-hand plot in
Fig. 7 summarizes our lattice data [12] for the infinite-volume transition amplitude Vπγ→ππ(q2,s)
( the complex phase as given by Watson’s Theorem is omitted ): central values are shown by gray
columns, and magenta boxes give the one-standard deviation intervals. To parameterize the data
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Figure 5: Selection of finite volume matrix element data and fits.
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Figure 6: Numerical values for the Lellouch-Lüscher factor
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Figure 7: Photo-production amplitude: lattice data ( gray columns with magenta one standard
deviation interval ) and surface of the nominal fit.

we employ a Taylor expansion of the form factor F (cf. eq. (2.3)) in s and q2 represented by the

variables S = (s−m2
R)/m2

R and z =
√

t+−q2−√t+−t0√
t+−q2+

√
t+−t0

:

F(q2,s) =
1

1− q2

m2
P

N

∑
n=0

M

∑
m=0

Anm zn S m , (5.4)

where in eq. (5.4) we explicitly factor out the expected pole in q2 at the resonance pole mass and
we use three sequences of cut-off schemes in the number of parameters Anm to probe systematic
dependence on the choice of fit model [12]. As an example, the surface in the left-hand plot of Fig.
7 shows our nominal fit result in the s-q2-plane. Notably, as shown by the sections for constant q2

on the right-hand plot of Fig. 7, the fall-off of the amplitude for
√

s larger than the resonance mass
is slower than expected for pure resonant behavior.

Finally, in Fig. 8 we show the analytic continuation Fπγ→ρ(q2) = Fπγ→ππ(q2,s = sP) in the
complex s-plane to the ρ pole. We find the imaginary part ( dashed line with green error band ) al-
most consistent with zero. The dark-shaded error bands give the combined statistical and complete
systematic uncertainty of Fπγ→ππ(q2,s = sP) up to the choice of parametrization in eq. (5.4). The
latter uncertainty is included within the light-shaded error bands.

As a pertinent observable we can determine the πγ→ ππ photo-production cross section from
Vπγ→ππ ,

σπγ→ππ(s,q2) =
e2

16π
k

4 |Vπγ→ππ(q2,s)|2
m2

π

. (5.5)

The cross-section for a real photon, eq. (5.5) continued to q2 = 0, is shown in the left-hand plot of
Fig. 9. With dark/light-shaded error bands we again distinguish the uncertainty excluding/including
the model choice for F .

From the analytically continued form factor Fπγ→ρ(q2) at q2 = 0 we obtain the radiative decay

7



P
o
S
(
C
D
2
0
1
8
)
0
8
0

πγ → ρ → ππ Marcus Petschlies

−0.10 −0.05 0.00 0.05

(aq)2

0.00

0.03

0.06

0.09

0.12
Re [Fπγ→ρ(q2)]

Im [Fπγ→ρ(q2)]

Figure 8: Analytic continuation of the form factor to the ρ pole
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Figure 9: Left: Photo-production cross-section depending on ππ center-of-mass energy; right:
Dependence of the numerically extracted ρ-π-γ coupling on the fit model.

width of the ρ as

Γ(ρ → πγ) =
2
3

α

(
(m2

ρ −m2
π)

2mρ

)3 |Gρπγ |2
m2

π

(5.6)

parameterized by the coupling Gρπγ introduced in eq. (2.2). For the coupling we find

|Gρπγ |= 0.0802(32)(20) , (5.7)

where the first uncertainty is statistical and systematic and the second uncertainty represents the
model dependence for Fπγ→ρ(0), which is shown in detail for all accepted parametrizations of the
form factor in the right-hand plot of Fig. 9. Using physical, PDG-values [13] for the particle masses
to have realistic kinematics and assuming a negligible pion-mass dependence of the dimensionless
coupling Gρπγ we thus obtain for the radiative decay width

Γ(ρ → πγ)lat = 84.2(6.7)(4.3)keV [physical mπ , mρ ]

Γ(ρ → πγ)exp = 68(7)keV [13] ,

in reasonable agreement with experiment.
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6. Outlook

Our continuing work focuses on calculations at smaller pion mass (mπ ∼ 170MeV) to in-
vestigate the chiral extrapolation as well as smaller lattice spacing to check for lattice artifacts.
Moreover, using our extended analysis framework and our already obtained data, we perform the
BHWL analysis for the heavy meson decay processes B→ (ρ → ππ)` ν̄` and B→ (K∗→ Kπ)``.
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