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1. Introduction

Pions and kaons are the lightest hadrons, corresponding to the pseudo-Goldstone bosons of
the spontaneous chiral symmetry breaking sector of QCD. Thus by studying their interaction one
is testing the QCD chiral symmetry breaking pattern. In addition, they appear in the final states in
almost all hadronic interactions, which makes the understanding of their rescattering effects crucial.
On top of that, most of the lightest mesons appear as resonances in this low energy meson-meson
scattering channels. This is the case of the much debated K∗0 (700) resonance, or the now well
known f0(500), which are not considered to fit within the ordinary quark-antiquark picture.

Even though there are many different πK scattering experiments [1, 2, 3, 4, 5], none of them
can directly access these interactions. All the main data sets are obtained by studying meson-
nucleon to meson-meson-nucleon interactions. The desired pion-meson scattering is then obtained
by assuming one pion exchange dominance, which could produce a large systematic effect depend-
ing on the accessible precision for the determination of the transferred momentum. As a result the
literature is plagued with many conflicting data sets (see [6] for a recent review). Actually, this is
the case for the most relevant partial waves in πK scattering.

Apart from scattering itself, the description of the relevant resonances, in particular both the
f0(500) and the K∗0 (700) has been subject of debate for many years. These two particles are too
broad to be determined with precision using simple models. In order to get a precise determination
of their parameters, one needs to rely on suitable techniques for an analytic continuation far from
the real axis, where the poles associated to such resonances are expected to be.

For all the reasons mentioned above, dispersive methods have become a crucial tool in modern
model independent analyses. Let us recall their derivation for meson-meson scattering, whose
amplitude T (s, t,u) depends just on two variables, since s+ t + u = ∑i m2

i . Dispersion relations
are nothing but the implementation of the analyticity of these amplitudes in the complex s, t plane,
which is a consequence of causality. There are different ways of building up a set of dispersion
relations. The simplest one, obtained by fixing t, yields two main singularitites, a left hand cut,
created by crossed channel interactions, and a right hand cut coming from unitarity in the physical
region. One thus implements the Cauchy theorem, which in the case of a non-subtracted dispersion
relation reads

T (s, t) =
1
π

∫
∞

sth

ds′
ImT (s′, t)

s′− s
+

1
π

∫ −∞

uth

ds′
ImT (s′, t)

s′− s
. (1.1)

More subtractions may be needed depending on the behavior of high-energy Regge exchanges, but
the analytic structure remains the same.

A complete study of partial-wave dispersion relations requires the expansion of all the ampli-
tudes into partial waves, then a projection of the dispersion relations, and the final solution of both
channels (πK and ππ → KK̄) at the same time. If precision is not the main goal, there are many
other simpler ways of implementing dispersion relations: one could for example unitarize Chiral
Perturbation Theory in a dispersive way, which has proved to be a feasible implementation of low
energy non-perturbative QCD [7, 8, 9]. There are also some works where the unphysical cuts have
been approximated, but the unitarity cut is described from the data using dispersion relations [10].

In the context of resonances, all these methods produce a fairly stable calculation of the
K∗0 (700) pole position. There is even a rigorous dispersive result [11, 12]. However, the K∗0 (700)
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still ‘’needs confirmation" according to the Review of Particle Physics [13]. A complete analysis
of both πK and ππ → KK̄ channels could lead to the desired, precise and robust determination of
this resonance.

The simplest dispersive set is called Forward Dispersion Relations. They are obtain by setting
t = 0 for a fixed-t dispersive integral. Apart from the main advantage of its simplicity, it can also be
applied up to arbitrary high energies, thus constraining the partial waves in the inelastic region, or
even more, producing a strong constrain for the contributions coming from the Regge exchanges.
Such a set has been proved to be very useful in previous analyses [14, 15].

As for the implementation of partial wave dispersion relations, the best known are the pro-
jected fixed-t dispersion relations [16, 17], called Roy-Steiner dispersion relations. Which, in the
particular case of πK scattering read

f I
l (s) =

m+a+0
2

+
1
π

∑
`

∫
∞

m2
+

ds′LI
l,`(s,s

′)Im f I
` (s
′)+

1
π

∑
`≥0

∫
∞

4m2
π

dt ′L0
l,2`(s, t

′)Img0
2`(t
′), . (1.2)

These equations have proved to be very useful in both the analysis of ππ and πK scattering [18,
11, 19] and in the precise determination of the parameters of the f0(500) [20, 21]. Unfortunately,
partial-wave dispersion relations cannot be applied at arbitrarily high energies, they are usually
restricted to roughly the elastic regions and, in some cases, fixed-t dispersion relations cannot be
applied far from the real axis. On top of that, once there are different particles involved, fixed-t
dispersion relations fail to describe the physical regions of the t-channel as they are not applicable
at those energies. A different set of dispersion relations [22], implemented for the relation (s−
a)(u− a) = b is customarily used in the literature, they are called hyperbolic dispersion relations
because of the curves the former equation defines on the Mandelstam Plane. The latter set has been
effectively implemented for different reactions (πK, ππ → KK̄, πN γγ → ππ , see [23, 11, 24, 25,
26]). The parameter a is commonly chosen to enlarge the region where the dispersion relations can
be applied, both in the real axis and in the complex plane.

There are two different approaches towards the implementation of dispersion relations in the
literature. The first one consists on solving the dispersion relations below a matching point sm,
above which the partial waves are described using the data, together with some theoretical input
for the low energy constants. Thus one does not need to include data close to threshold, as the
solution is a prediction of the given set of dispersion relations. The second approach is to constrain
the initial fits to the data together with the dispersion relations. The result is then a fit that describes
both the data and the analytical requirements. In practice, the system is solved for the lowest partial
waves as they are the only ones contributing to the low energy region. The number of subtractions
depends first on the behavior of the Regge exchanges, and also on the chosen approach.

2. Dispersive analysis

In this work, we focus on the study of both the πK and ππ → KK̄ channels, and on obtaining
the K∗0 (700) resonance, so that the most convenient set is that of the hyperbolic dispersion relations.
Nonetheless, we will also make use of fixed-t dispersion relations to constrain the parameterizations
of the s-channel in the real axis even more, as they are basically dominated by the s-channel inputs
coming from the data. On top of that, we will finally include Forward Dispersion Relations to
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Figure 1: Preliminary checks and CFDs of the f 1/2
0 (s), f 3/2

0 (s) and f 1/2
1 (s) partial waves.

constrain the data at higher energies, including the contributions arising from the Regge exchanges.
Summarizing, we are making use of 15 dispersion relations applied to a total of 11 different partial
waves.

The first stage of the work is to obtain a simple but robust description of the partial waves from
the existing data sets, in order to do so we combine the implementation of several functional forms,
and a consistent way of pruning the data [27]. The result is a complete description of all relevant
partial waves in both channels up to 2 GeV.

Thereupon the dispersion relations are implemented and the consistency between the input (fit
to the data) and the output is tested. The way to measure this deviation is through the definition of
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a distance

d2 =
1
N

N

∑
i=1

(
di

∆di,

)2

, (2.1)

where di is the difference between the “input” and “output”, weighted by the uncertainty of each
dispersion relation at the given energy

√
si. This distance is now added to the χ2 of every partial

wave, all of them weighted by the degrees of freedom they are roughly describing. The final d2

function has similar properties of a χ2. As shown in Fig.1 there is a clear deviation between input
and output. Such a behavior is due to some inputs that are not contributing appropriately to the
dispersive integrals and a minimization of the whole function is hence needed. Fortunately, the
χ2-like behavior of d2 implies that it can be obtained by standard methods.

The last step is to constrain these data fits using the dispersion relations introduced above. As
shown in Fig. 2 the differences between the unconstrained fits to data (UFD) of the scalar partial
waves and the constrained ones (CFD) are small and well under the spread of the existing data.
Albeit small, these deviations are crucial as all relevant partial waves are correlated through the set
of dispersion relations. Once the result is found, we provide our simple, yet precise and consistent
set of fits to be used in many different applications. In particular one can calculate with high
accuracy interesting low energy parameters, like the scattering lengths:

mπa1/2
0 = 0.22±0.01, (Preliminary)

mπa3/2
0 =−0.05±0.01. (Preliminary) (2.2)

Figure 2: f 3/2
0 (s) (left) and f 1/2

0 (s) (right) preliminary CFD vs UFD partial waves.

3. Summary

Using the set dispersion relations explained above we have been able to constrain the data
fits of both πK and ππ → KK̄ channels by means of a penalty χ2-like function. The result is the
set a set of partial-wave parameterizations, which are now compatible with Roy-Steiner dispersion
relations up to roughly 1 GeV, while fulfilling also Forward Dispersion Relations up to 1.6 GeV.
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