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We perform a detailed analysis of e+e−→ π+π− data for energies below 1GeV, based on a dis-
persive representation of the pion vector form factor. Using an extended Omnès representation
and input for the ππ P-wave phase shift from a previous Roy-equation analysis, we express the
pion vector form factor in terms of a few free parameters, which are fit to the modern high-
statistics data sets. Statistically acceptable fits are obtained as soon as potential uncertainties
in the energy calibration are taken into account. The fits prefer a mass of the ω meson signif-
icantly lower than the current PDG average. We perform a complete analysis of statistical and
systematic uncertainties and derive the consequences for the two-pion contribution to hadronic
vacuum polarization and the muon anomalous magnetic moment aµ. In a global fit, we find
aππµ |≤1GeV = 495.0(1.5)(2.1) × 10−10 and aππµ |≤0.63GeV = 132.8(0.4)(1.0) × 10−10. As side prod-
ucts, we obtain improved constraints on the ππ P-wave as well as a determination of the pion
charge radius, 〈r2

π〉 = 0.429(1)(4) fm2.
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1. Introduction

Hadronic vacuum polarization (HVP) is the dominant hadronic contribution to the anomalous
magnetic moment of the muon aµ [1 – 3]. About 70% of this contribution is due to the two-pion
channel, which is also responsible for a similar fraction of the uncertainty of the HVP contribu-
tion to aµ. Unitarity relates this contribution to the pion vector form factor (VFF) FV

π , which is
accessible in the reaction e+e−→ π+π−.

Unitarity and analyticity of the VFF itself allow one to express this object in terms of the ππ
scattering phase shift, up to inelastic corrections. Very precise representations of the elastic ππ
phase shifts up to roughly 1GeV have been obtained in analyses [4 – 6] of the Roy equations [7].

Dispersion relations that connect the two-pion HVP contribution to aµ with the pion VFF
and ππ scattering have been established long ago [8 – 11]. Similar representations have been used
more recently [12 – 15], in particular in the context of our dispersive approach to hadronic light-
by-light (HLbL) scattering [16 – 23]. At this conference, the two-pion contributions to HLbL were
presented in [24].

In the last two decades, the experimental situation in e+e−→ π+π− has improved considerably,
but at the same time the required precision of the HVP contribution to aµ has increased further, in
particular in view of the anticipated improvement of the experimental measurement of aµ by a fac-
tor 4 at the Fermilab experiment. Most current HVP compilations are based on a direct integration
of the experimental data [25 – 27], wherein conflicting data sets are treated by a local χ2 inflation.
The most consequential such tensions currently affect the BaBar [28, 29] and KLOE [30 – 33] data
sets for the ππ channel, and different methods for their combination then give rise to the single
largest difference between the HVP compilations of [26] and [27].

Here, we summarize our recent reanalysis of the ππ contribution to HVP based on a dispersive
representation of the VFF [34]. We explain the global fit function that the VFF needs to follow to
avoid conflicts with unitarity and analyticity. The resulting representation is fit to the modern high-
statistics data sets, by using an unbiased fit strategy and including the full experimental covariance
matrices where available, providing a strong check of the internal consistency of each data set. We
address the systematic uncertainties in the dispersive representation and derive the HVP results for
various energy intervals. As side products, we obtain improved constraints on the ππ P-wave phase
shift as well as a determination of the pion charge radius.

2. Dispersive representation of the pion vector form factor

In the following, we give a short summary of the dispersive representation of the pion VFF
FV
π (s) as put forward in [9, 10]. The VFF is related to the final-state-radiation-inclusive cross

section by

σ(e+e−→ γ∗→ π+π−(γ)) =
[
1+

α

π
η(s)

] π��α(s)��2
3s

σ3
π(s)

��FV
π (s)

��2 s+2m2
e

sσe(s)
, (2.1)

where the effect of vacuum polarization is expressed in terms of the running coupling α(s) and
η(s) describes the final-state radiation within scalar QED [35 – 37]. The correction of initial-state
radiation is performed with Monte Carlo generators in the context of each experiment [38 – 40, 36].
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In order to apply the constraints of unitarity and analyticity, we need to treat the form factor in pure
QCD. We include the most important strong isospin-breaking effect from the mixing into the 3π
channel. For a more detailed discussion of radiative corrections, we refer to [34].

In the isospin limit, FV
π (s) is an analytic function of s, apart from a branch cut in the complex

s-plane that lies on the real axis, s ∈ [4M2
π,∞), and is dictated by unitarity. We parametrize the pion

VFF as a product of three functions,

FV
π (s) =Ω

1
1(s)Gω(s)GN

in (s), (2.2)

where

Ω
1
1(s) = exp

{
s
π

∫ ∞

4M2
π

ds′
δ1

1(s
′)

s′(s′− s)

}
(2.3)

is the usual Omnès function [41] with δ1
1(s) the isospin I = 1 elastic ππ phase shift in the isospin-

symmetric limit. The factor Gω accounts for ρ–ω mixing, the most important isospin-breaking
effect, which becomes enhanced by the small mass difference between the ρ and ω resonances.
The parametrization

Gω(s) = 1+
s
π

∫ ∞

9M2
π

ds′
Imgω(s′)
s′(s′− s)

©«
1− 9M2

π

s′

1− 9M2
π

M2
ω

ª®®¬
4

, gω(s) = 1+ εω
s

(Mω −
i
2Γω)

2− s
(2.4)

implements the correct threshold behavior of the discontinuity, i.e. the right-hand cut starting at
9M2

π opens with the fourth power of the center-of-mass momentum [9]. The remaining function
GN

in (s) is analytic in the complex s-plane with a cut on the real axis starting at s = 16M2
π . It

takes into account all further inelastic contributions to the unitarity relation. We describe it by a
conformal polynomial

GN
in (s) = 1+

N∑
k=1

ck(zk(s)− zk(0)), z(s) =
√

sin− sc −
√

sin− s
√

sin− sc +
√

sin− s
(2.5)

and we consider inelasticities only above sin = (Mπ0 +Mω)
2, since 4π inelasticities are extremely

weak below. P-wave behavior at the inelastic threshold requires

c1 = −

N∑
k=2

k ck . (2.6)

This parametrization of the VFF fulfills all requirements of analyticity and unitarity, includ-
ing explicitly the 2π and 3π channels and inelastic corrections in the conformal polynomial. We
expect this representation to be accurate as long as the conformal polynomial provides an efficient
description of inelastic effects, conservatively estimated below

√
s = 1GeV. As main input, we

require the elastic ππ P-wave phase shift δ1
1(s). The isospin-breaking corrections are parametrized

in terms of the ω parameters εω, Mω, and Γω. The inelastic contribution is parametrized in terms
of N −1 free parameters ck as well as sc, the point that is mapped to the origin z(sc) = 0 and should
be chosen sufficiently far below any thresholds.
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The input for the elastic P-wave ππ scattering phase shift is taken from the solution of the
Roy-equation analysis [4, 6]. This solution depends on 27 parameters, which we treat as a source
of systematic uncertainties, apart from two parameters that represent the values of the P-wave
phase shift at s0 = (0.8GeV)2 and at s1 = (1.15GeV)2. They were estimated in [6] as

δ1
1(s0) = 108.9(2.0)◦, δ1

1(s1) = 166.5(2.0)◦. (2.7)

In our description of the VFF, we do not use these estimates but treat the values of the phase at s0
and s1 as free fit parameters. At energies above 1.3GeV, the ππ phase shift is not as well known
as in the low-energy region and represents another source of systematic uncertainty, which we
estimate by considering different continuations to an asymptotic value lim

s→∞
δ1

1(s) = π.
In [42, 43], a generalization of Watson’s theorem [44] was derived that amounts to a con-

straint on the difference between the phase of the VFF and the elastic ππ scattering phase shift,
the Eidelman–Łukaszuk (EŁ) bound. With data input on the ratio of non-2π to 2π hadronic cross
sections in the isospin I = 1 channel [43], the EŁ bound provides an important constraint on the
parameters ck of the conformal polynomial that we use to describe the inelastic contributions.

3. Fits to e+e− data

The dispersive representation of the VFF is fit to modern high-statistics e+e− data sets. We
take into account the results from the energy-scan experiments SND [45, 46] and CMD-2 [47 – 50]
as well as from the radiative-return experiments BaBar [28, 29] and KLOE [30 – 33]. In addition
to these time-like data sets, we use NA7 data [51] on the space-like form factor from the scattering
of pions off an electron target. Where available, we use the full experimental covariance matrices
and treat systematic errors with the iterative method proposed by the NNPDF collaboration [52],
which avoids the D’Agostini bias [53].

We find that statistically acceptable fits to each experiment separately are possible, provided
that the distinct ρ–ω interference shape in the data is properly aligned with the fit function. This
requires either theω mass to be taken as a free fit parameter or a rescaling of the energies of the data
points, reflecting a possible experimental calibration uncertainty. We perform fits to combinations
of experiments and in this case both allow the ω mass to float and include an energy rescaling in
each experiment, constrained by the experimental calibration uncertainties.

We observe that in the KLOE data set, two data points are responsible for a contribution of
more than 30 units to the χ2 of our fits. Removing these two points as obvious outliers improves
the goodness of the fit without significantly changing the central values of the fit results.

As shown in Fig. 1, both our final result for theω mass resulting from the fit to the combination
of all experiments

Mω = 781.68(9)(3)MeV, (3.1)

and the results from fits to single experiments disagree with the PDG average, which is mainly
based on e+e−→ 3π data [54, 48]. This observation has been made before [29, 15] and deserves
further attention.

In Table 1, we show the fit results to single time-like data sets. The parameters ξj denote
the applied energy rescaling of the data points and KLOE′′ denotes the data set where the two
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Figure 1: Error ellipses for the parameters εω and Mω resulting from fits to single experiments and the fit
to the combination of all experiments. The smaller ellipses are standard error ellipses that correspond to
∆χ2 = 1, the larger ellipses are inflated by the PDG scale factor S =

√
χ2/dof.

χ2/dof Mω [MeV] 103× ξj δ1
1(s0) [◦] δ1

1(s1) [◦] 103× εω

SND 51.9/37 = 1.40 781.49(32)(2) 0.0(6)(0) 110.5(5)(8) 165.7(0.3)(2.4) 2.03(5)(2)
CMD-2 87.4/74 = 1.18 781.98(29)(1) 0.0(6)(0) 110.5(5)(8) 166.4(0.4)(2.4) 1.88(6)(2)
BaBar 299.1/262 = 1.14 781.86(14)(1) 0.0(2)(0) 110.4(3)(7) 165.7(0.2)(2.5) 2.04(3)(2)

KLOE 254.5/187 = 1.36 781.82(17)(4)

{ 0.6(2)(0)
−0.3(2)(0)
−0.2(3)(0)

110.4(2)(6) 165.6(0.1)(2.4) 1.97(4)(2)

KLOE′′ 222.5/185 = 1.20 781.81(16)(3)

{ 0.5(2)(0)
−0.3(2)(0)
−0.2(3)(0)

110.3(2)(6) 165.6(0.1)(2.4) 1.98(4)(1)

Table 1: Final fits to single e+e− experiments with N −1 = 4 free parameters in the conformal polynomial.
The first error is the fit uncertainty, inflated by

√
χ2/dof, the second error is the combination of all systematic

uncertainties.

outliers are removed. The fit quality corresponds to p-values between 3% and 14%, apart from the
fit to KLOE including the two outliers (with a p-value of 7×10−4). Detailed results for the fits to
combinations of data sets including the space-like NA7 data can be found in [34].

Fig. 2 shows the result for the pion VFF in the region of the ρ–ω interference in a fit to the
combination of all experiments. Fig. 3 shows the relative difference between the data points and the
fit in the energy region [0.6,0.9]GeV. The well-known discrepancy between the BaBar and KLOE
data sets is evident. In all results, the fit errors are inflated by a scale factor [55] S =

√
χ2/dof,

which in fits to combinations of data sets lies between 1.12 and 1.19. We remark that in particular
for high statistics, this prescription does not fully account for a situation where the systematic
uncertainties in the experiments were underestimated.

4. Contribution to the anomalous magnetic moment of the muon

In Table 2 we collect the results for aππµ for single time-like experiments and a variety of
different energy regions below 1GeV, some of which have been considered in previous work.
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Figure 2: Fit result for the pion VFF in the ρ–ω interference region, together with the e+e− data sets. The
data points are shown with the energy rescaling and the curve is the fit result with (3.1) for the ω mass.
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Figure 3: Relative difference between the data points and the fit result for the VFF, normalized to the fit
result for |FV

π (s)|
2. The total error is given by the fit error and the systematic uncertainty, added in quadrature.

Fig. 4 illustrates the results for aππµ below 1GeV including fits to the combination of the energy-
scan experiments SND and CMD-2, all time-like data sets, and the full combination including NA7.
More detailed results for the fits to the combination of experiments are given in [34].

Where published results are available, we have included the comparison in the tables, e.g.
from direct integration [33, 27] and the dispersive analysis [13]. We find that our results are well
compatible, within uncertainties of a similar size. An exception is the comparison to the direct
integration of the data between

√
0.1 and

√
0.95 GeV performed by KLOE [33] where our method

shows a significant reduction of the uncertainties: this is mainly due to the region below 0.6 GeV
where KLOE data show a loss of precision. In the regions where there are high-quality data, these
are so precise and densely spaced that our method mainly serves as a check of the consistency of
the data with the principles of analyticity and unitarity. We stress that our uncertainty estimates
rely on minimal assumptions, the dispersive parametrization as a consequence of QCD and the
covariances matrices provided by experiment.

Our most comprehensive result gives the full contribution below 1GeV in a combination of all

5
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485 490 495 500 505
1010× aππµ |≤1GeV

Result for aππµ |≤1GeV from the VFF fits to single experiments and combinations

All e+e− (KLOE′′), NA7

All e+e− (KLOE′′)

All e+e−, NA7

All e+e−
Energy scan

KLOE′′
KLOE

BaBar

CMD-2

SND

Figure 4: Results for aππµ in the energy range ≤ 1GeV. The smaller error bars are the fit uncertainties,

inflated by
√
χ2/dof, the larger error bars are the total uncertainties. The gray bands indicate our final result.

1010 × aππµ
Energy region [GeV] ≤ 0.6 ≤ 0.7 ≤ 0.8 ≤ 0.9 ≤ 1.0

SND 110.3(1.2)(1.4) 215.8(2.9)(2.5) 416.3(5.7)(3.6) 484.0(6.7)(4.0) 499.7(6.9)(4.1)
CMD-2 109.1(1.0)(1.3) 212.8(2.1)(2.1) 413.2(3.4)(2.1) 481.4(3.9)(2.3) 496.9(4.0)(2.3)
BaBar 110.8(6)(8) 216.8(1.4)(1.3) 418.2(2.8)(1.8) 486.1(3.2)(2.0) 501.9(3.3)(2.0)
KLOE 110.1(5)(5) 214.6(1.1)(1.2) 411.2(1.9)(1.6) 477.0(2.2)(1.8) 492.0(2.2)(1.8)
KLOE′′ 110.2(5)(5) 214.6(1.0)(1.0) 410.9(1.8)(1.4) 476.7(2.0)(1.7) 491.8(2.1)(1.8)

Energy region [GeV] ≤ 0.63 [0.6,0.9] Ref. [33]
[√

0.1,
√

0.95
]

Ref. [33]

SND 133.2(1.6)(1.7) 373.6(5.6)(2.6) 371.7(5.0) 495.3(6.9)(4.0)
CMD-2 131.6(1.2)(1.6) 372.2(3.1)(1.0) 372.4(3.0) 492.6(3.9)(2.3)
BaBar 133.8(8)(9) 375.3(2.7)(1.2) 376.7(2.7) 497.5(3.3)(2.0)
KLOE 132.8(6)(8) 366.8(1.8)(1.5) 366.9(2.1) 487.7(2.2)(1.8) 489.8(5.1)
KLOE′′ 132.9(6)(6) 366.5(1.7)(1.6) 366.9(2.1) 487.5(2.1)(1.7) 489.8(5.1)

Table 2: Values for aππµ from our final fits to single e+e− experiments. The first error is the fit uncertainty,

inflated by
√
χ2/dof, the second error the combination of all systematic uncertainties. The energy regions in

the second block are provided to facilitate comparison with [13] and the results of the direct integration [33].

available time- and space-like constraints

aππµ |≤1GeV = 495.0(1.5)(2.1)×10−10 = 495.0(2.6)×10−10, (4.1)

where the inclusion of the space-like data does allow for a modest reduction of the uncertainty from
2.8 to 2.6 units. As noted before [13], the main advantage over direct integration occurs in energy
regions where data are still scarce, most notably the low-energy region

aππµ |≤0.63GeV = 132.8(0.4)(1.0)×10−10 = 132.8(1.1)×10−10. (4.2)

Our result agrees with the combination of e+e− data sets from [13, 56], aππµ |≤0.63GeV = 132.9(8)×
10−10, which provides another important cross check given several conceptual differences com-
pared to our study.

6
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5. Charge radius of the pion

The charge radius of the pion, 〈r2
π〉, is defined by the derivative of the VFF at s = 0

〈r2
π〉 = 6

dFV
π (s)
ds

����
s=0
=

6
π

∫ ∞

4M2
π

ds
Im FV

π (s)
s2 . (5.1)

With the VFF determined from the fit to e+e− → π+π− and space-like data sets, the dispersive
integral produces the results

〈r2
π〉 = 0.429(1)(4) fm2 = 0.429(4) fm2. (5.2)

The uncertainties are dominated by the variation of the order of the conformal polynomial N . In
particular, in contrast to the HVP contribution, the sum rule (5.1) is directly sensitive to the phase
of the conformal polynomial, which is only constrained by the EŁ bound up to 1.15GeV.

Within uncertainties, our result is consistent with the previous dispersive extraction 〈r2
π〉 =

0.432(4) fm2 from [57], but the tension with the PDG average 〈r2
π〉 = 0.452(11) fm2 [55] is further

exacerbated. However, as noted before [15], this average does not contain any modern e+e− →
π+π− data sets and, if potentially model-dependent extractions from eN → eπN [58, 59] were
excluded, would be dominated by NA7 〈r2

π〉 = 0.439(8) fm2 [51], in better agreement with (5.2).

6. Conclusions

We analyzed the strong constraints of analyticity and unitarity on ππ scattering and the pion
VFF and worked out in detail the consequences for the HVP contribution to the anomalous mag-
netic moment of the muon, including a consistent implementation of all uncertainties. The central
outcome of this study (4.1) shows that the systematic uncertainties in the dispersive representation
can be controlled at a level that renders this approach a valuable complementary perspective to the
direct integration of the experimental data. In particular, it provides the best controlled extrapo-
lation down to the two-pion threshold where data are less precise or just absent. Once possible
uncertainties in the energy calibration are taken into account all present data sets can be described
in a statistically acceptable way, providing a strong check on their internal consistency. The com-
bination of data sets follows in a straightforward way from the propagation of the uncertainties, up
to a small inflation of the final uncertainties by

√
χ2/dof ∼ 1.1 in the standard manner. The inclu-

sion of space-like data sets provides a further consistency check and leads to a modest reduction in
uncertainty.

As a side-product, we obtained a precise determination of the pion charge radius (5.2), which
provides further evidence that the PDG average for 〈r2

π〉 needs to be revised. Another issue concerns
the mass of the ω, for which it would be important to clarify the origin of the current mismatch
between extractions from the 2π and 3π channels.
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